skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

Abstract

Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed themore » Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance assessment, inclusion of dose calculations from collocated low-level waste in the boreholes for the individual protection requirements, further assessments of engineered barriers and conditions associated with the assurance requirements, and expansion of documentation provided for assessing the groundwater protection requirements. The Transuranic Waste Disposal Federal Review Group approved the performance assessment for Greater Confinement Disposal boreholes in 2001 and did not approve the Application of the Assurance Requirements. Remaining issues concerned with engineered barriers and the multiple aspects of the Assurance Requirements will be resolved at the time of closure of the Area 5 Radioactive Waste Management Site. This is the first completion and acceptance of a performance assessment for transuranic materials under the U.S. Department of Energy self-regulation. The Greater Confinement Disposal boreholes are only the second waste disposal configuration to meet the safety regulatory requirements of 40 CFR 191.« less

Authors:
; ;
Publication Date:
Research Org.:
Waste Management Division U.S. Department of Energy National Nuclear Security Administration/Nevada Site Office (US); Los Alamos National Lab., NM (US); Sandia National Laboratories, Albuquerque, NM (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
825963
Resource Type:
Conference
Resource Relation:
Conference: Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003; Other Information: PBD: 27 Feb 2003
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; ALLUVIAL DEPOSITS; BOREHOLES; CONFINEMENT; DISTRIBUTION FUNCTIONS; HUMAN INTRUSION; MATHEMATICAL MODELS; NEVADA TEST SITE; PERFORMANCE; RADIOACTIVE WASTE MANAGEMENT; RADIOISOTOPES; US EPA; WASTE DISPOSAL; WASTE MANAGEMENT; WASTES; WIPP

Citation Formats

Colarusso, Angela, Crowe, Bruce, and Cochran, John R. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE. United States: N. p., 2003. Web.
Colarusso, Angela, Crowe, Bruce, & Cochran, John R. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE. United States.
Colarusso, Angela, Crowe, Bruce, and Cochran, John R. Thu . "COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE". United States. https://www.osti.gov/servlets/purl/825963.
@article{osti_825963,
title = {COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE},
author = {Colarusso, Angela and Crowe, Bruce and Cochran, John R},
abstractNote = {Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance assessment, inclusion of dose calculations from collocated low-level waste in the boreholes for the individual protection requirements, further assessments of engineered barriers and conditions associated with the assurance requirements, and expansion of documentation provided for assessing the groundwater protection requirements. The Transuranic Waste Disposal Federal Review Group approved the performance assessment for Greater Confinement Disposal boreholes in 2001 and did not approve the Application of the Assurance Requirements. Remaining issues concerned with engineered barriers and the multiple aspects of the Assurance Requirements will be resolved at the time of closure of the Area 5 Radioactive Waste Management Site. This is the first completion and acceptance of a performance assessment for transuranic materials under the U.S. Department of Energy self-regulation. The Greater Confinement Disposal boreholes are only the second waste disposal configuration to meet the safety regulatory requirements of 40 CFR 191.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {2}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: