skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

Technical Report ·
DOI:https://doi.org/10.2172/823015· OSTI ID:823015
 [1];  [2];  [3]
  1. Washington Department of Fish and Wildlife, Olympia, WA
  2. Oncorh Consulting, Olympia, WA
  3. Yakima Nation, Toppenish, WA

In 2001 hatchery- and wild-origin spring chinook were placed into an observation stream located at the Cle Elum Supplementation Research Facility to compare their reproductive success. Two groups containing both wild- and hatchery fish of both sexes were brought into the stream and allowed to spawn. Their longevity, spawning participation, and reproductive success were assessed. In addition, wild- and hatchery-origin precocious males were also introduced into one of the sections and allowed to spawn. We found that hatchery and wild males generally lived longer than females. In one group hatchery and wild females lived for similar periods of time while in the other wild females lived longer than hatchery fish. Wild females were also more successful at burying their eggs and the eggs they buried had higher survival rates. This result occurred in both groups of fish. Spawning participation in males was estimated by using two statistics referred to as percent gonad depletion (PGD) and percent testes retention (PRT). Both of these measures assumed that loss of testes weight in males would reflect their spawning participation and therefore could be used to estimate reproductive success. Hatchery and wild males had similar PGD and PRT values. One of these measures, PRT, was negatively associated with male reproductive success, confirming the idea that reduction in testes weight can be used as a surrogate measure of a male's ability to produce offspring Fry from the observation stream were collected throughout the emergence period that ran from January through May. Proportionate sub-samples of these fish were removed and microsatellite DNA was extracted from them. Pedigree analyses were performed to ascertain which adult fish had produced them. These analyses disclosed that wild males were more successful at producing progeny in one of the groups. No difference occurred in the other group. Precocial males and jacks fathered fewer progeny than did fish maturing at ages 4 and 5. In addition, male reproductive success was more than twice as variable as that seen in females. Some males apparently never spawned and others produced more than 7,000 offspring an amount that was more than double the quantity generated by the most successful female. Behavioral observations showed that a number of factors besides male origin influenced their reproductive success. One was relative body size; larger males tended to dominate smaller opponents and therefore had greater access to females. However, male dominance was not always related to relative size. The ability to attack and chase opponents was, however, positively related to reproductive success. We also discovered that the reproductive status of females and the social status of males were often reflected by their nuptial coloration. Territorial females typically had a single broad purple black stripe, light green or brown backs and white or gray ventral surfaces. Dominate males on the other hand, were generally a uniform dark brown or black color. The percentage of time that a male possessed a dark color pattern was positively linked to his reproductive success, as was the percentage of time he was observed courting or defending a female. The number of times a male was chased or attacked by a female also affected his reproductive success, in this situation the greater the frequency of such attacks the lower the reproductive success of the male. The pedigree analyses also disclosed that both hatchery and wild precocious males were able to fertilize eggs and produce offspring under natural spawning conditions. In conclusion we found differences in the reproductive competency of hatchery- and wild origin spring chinook. Wild females were better at depositing their eggs and having those eggs produce fry. In one study group wild males were more successful at producing offspring than hatchery males. Additional replications of such evaluations are being carried out to determine if the differences seen can be replicated. A repeat of the work done in 2001, for example, was performed in 2002 and additional studies will take place this coming year.

Research Organization:
Bonneville Power Administration, Portland, OR (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
00004666; 00005881
OSTI ID:
823015
Report Number(s):
DOE/BP-00004666-15; R&D Project: 199506325; 199506424; TRN: US200415%%181
Resource Relation:
Other Information: PBD: 1 May 2003
Country of Publication:
United States
Language:
English