skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of vehicle fuel release resulting in waste tank fire

Technical Report ·
DOI:https://doi.org/10.2172/817854· OSTI ID:817854

The purpose of the calculation documented here is to support in-tank vehicle fuel fire accident frequencies in the Documented Safety Analysis. This analysis demonstrates that the frequency of the pool fire and deflagration scenarios of the in-tank vehicle fuel fire/deflagration accident are ''extremely unlikely'' to ''unlikely.'' The chains of events that result in each scenario are presented in this document and are the same as used in previous analyses of this accident. Probabilities and frequencies are developed for each event, using wherever possible, information from RPP-13121, Tables B-1 and B-2, and from the River Protection Project ORPS. The estimated probabilities are considered reasonably conservative, but do not necessarily assume the worst possible outcomes or the most conservative possible cases. A sensitivity analysis performed in Section 4.2 shows that if the probability of either the ignition of fuel event or the fuel flows into riser event were underestimated by an order of magnitude, the accident frequency for a pool fire could increase and shift into the ''unlikely'' category. If the probability of an increase in riser strikes, or an increase in broken risers, unignited fuel entering a riser, or a fuel ignition source being present in a tank were underestimated by an order of magnitude, the accident frequency for a deflagration would remain in the ''unlikely'' category. When the likelihood of a broken riser is increased by an order of magnitude, a pool fire remains in the ''extremely unlikely'' category. The DSA accident analysis indicates that an unmitigated flammable gas deflagration resulting from an induced gas release event or an organic solvent fire occurring in either an SST or a DST is an anticipated event (> 10{sup -2}). Deflagration in a DST annulus is considered unlikely (> 10{sup -4} to {le}10{sup -2}). These frequencies clearly bound those of the in-tank vehicle fuel fire family of accidents.

Research Organization:
CH2M Hill Hanford Group, Inc., Richland, WA (United States)
Sponsoring Organization:
USDOE Office of Environmental Management (EM) (US)
DOE Contract Number:
AC27-99RL14047
OSTI ID:
817854
Report Number(s):
RPP-13261, Rev.2; TRN: US0305251
Resource Relation:
Other Information: PBD: 14 Oct 2003
Country of Publication:
United States
Language:
English