skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of Neptunium Precipitator Cleanout Options

Abstract

Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6more » grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern. Experimental results indicate that a solubility of at least 40 grams of Np/liter can be obtained using permanganate at ambient temperature, although it is expected that even higher neptunium concentrations can be achieved.« less

Authors:
Publication Date:
Research Org.:
Savannah River Site (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
815590
Report Number(s):
WSRC-TR-2003-00225
TRN: US0304662
DOE Contract Number:  
AC09-96SR18500
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 8 Sep 2003
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; FILTRATION; NEPTUNIUM COMPOUNDS; OXALATES; PERMANGANATES; PRECIPITATION; SOLUBILITY; TANKS; CLEANING

Citation Formats

Hill, B C. Investigation of Neptunium Precipitator Cleanout Options. United States: N. p., 2003. Web. doi:10.2172/815590.
Hill, B C. Investigation of Neptunium Precipitator Cleanout Options. United States. doi:10.2172/815590.
Hill, B C. Mon . "Investigation of Neptunium Precipitator Cleanout Options". United States. doi:10.2172/815590. https://www.osti.gov/servlets/purl/815590.
@article{osti_815590,
title = {Investigation of Neptunium Precipitator Cleanout Options},
author = {Hill, B C},
abstractNote = {Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6 grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern. Experimental results indicate that a solubility of at least 40 grams of Np/liter can be obtained using permanganate at ambient temperature, although it is expected that even higher neptunium concentrations can be achieved.},
doi = {10.2172/815590},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2003},
month = {9}
}

Technical Report:

Save / Share: