skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

Abstract

The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 60-{micro}m C-500-04 alumina catalyst particles and a PFA differential fixed-bed micro reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into elemental sulfur were carried out for the space time range of 0.01-0.047 seconds at 125-155 C to evaluate effects of reaction temperatures, moisture concentrations, reaction pressures on conversion of hydrogen sulfide into elemental sulfur. Simulated coal gas mixtures consist ofmore » 61-89 v% hydrogen, 2,300-9,200-ppmv hydrogen sulfide, 1,600-4,900 ppmv sulfur dioxide, and 2.6-13.7 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 100-110 cm{sup 3}/min at room temperature and atmospheric pressure (SCCM). The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 28-127 psia. The following results were obtained based on experimental data generated from the differential reactor system, and their interpretations, (1) Concentration of moisture and concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the moisture range of 2.5-13.6 v% moisture at 140 C and 120-123 psia. (2) Concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the temperature range of 135-145 C at 5-v% moisture and 112-123 psia. However, reaction rates of H{sub 2}S with SO{sub 2} appear to decrease slightly with increased reaction temperatures over the temperature range of 135-145 C at 5-v% moisture and 112-123 psia. (3) Concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the pressure range of 28-123 psia at 5-v% moisture and 140 C. However, reaction rates of H{sub 2}S with SO{sub 2} increase significantly with increased reaction pressures over the pressure range of 28-123 psia at 5-v% moisture and 140 C.« less

Authors:
Publication Date:
Research Org.:
Tuskegee University (US)
Sponsoring Org.:
(US)
OSTI Identifier:
815459
DOE Contract Number:  
FG26-00NT40835
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Jan 2003
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; ATMOSPHERIC PRESSURE; COAL GAS; HYDROGEN SULFIDES; KINETICS; OXIDATION; PACKED BEDS; REACTION KINETICS; SULFUR; SULFUR DIOXIDE

Citation Formats

Kwon, K C. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR. United States: N. p., 2003. Web. doi:10.2172/815459.
Kwon, K C. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR. United States. https://doi.org/10.2172/815459
Kwon, K C. 2003. "KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR". United States. https://doi.org/10.2172/815459. https://www.osti.gov/servlets/purl/815459.
@article{osti_815459,
title = {KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR},
author = {Kwon, K C},
abstractNote = {The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 60-{micro}m C-500-04 alumina catalyst particles and a PFA differential fixed-bed micro reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into elemental sulfur were carried out for the space time range of 0.01-0.047 seconds at 125-155 C to evaluate effects of reaction temperatures, moisture concentrations, reaction pressures on conversion of hydrogen sulfide into elemental sulfur. Simulated coal gas mixtures consist of 61-89 v% hydrogen, 2,300-9,200-ppmv hydrogen sulfide, 1,600-4,900 ppmv sulfur dioxide, and 2.6-13.7 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 100-110 cm{sup 3}/min at room temperature and atmospheric pressure (SCCM). The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 28-127 psia. The following results were obtained based on experimental data generated from the differential reactor system, and their interpretations, (1) Concentration of moisture and concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the moisture range of 2.5-13.6 v% moisture at 140 C and 120-123 psia. (2) Concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the temperature range of 135-145 C at 5-v% moisture and 112-123 psia. However, reaction rates of H{sub 2}S with SO{sub 2} appear to decrease slightly with increased reaction temperatures over the temperature range of 135-145 C at 5-v% moisture and 112-123 psia. (3) Concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction rates of H{sub 2}S with SO{sub 2} over the pressure range of 28-123 psia at 5-v% moisture and 140 C. However, reaction rates of H{sub 2}S with SO{sub 2} increase significantly with increased reaction pressures over the pressure range of 28-123 psia at 5-v% moisture and 140 C.},
doi = {10.2172/815459},
url = {https://www.osti.gov/biblio/815459}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jan 01 00:00:00 EST 2003},
month = {Wed Jan 01 00:00:00 EST 2003}
}