skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

Abstract

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development ofmore » a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding quarter, MSRE Remediation Studies focused on recovery of {sup 233}U and its conversion to a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. Investigation of options for final disposition of the {sup 233}U inventory represents a new initiative within this area. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids.« less

Authors:
Publication Date:
Research Org.:
ORNL Oak Ridge National Laboratory (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
814619
Report Number(s):
ORNL/TM-1999/304
TRN: US0304471
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 16 Apr 2001
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BIOTECHNOLOGY; CHEMICAL ENGINEERING; CHEMISTRY; DEPLETED URANIUM; HOT CELLS; MSRE REACTOR; NEUTRON SOURCES; PHYSICAL PROPERTIES; PROCESS SOLUTIONS; PROGRESS REPORT; SIMULATION

Citation Formats

Jubin, R T. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999. United States: N. p., 2001. Web. doi:10.2172/814619.
Jubin, R T. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999. United States. https://doi.org/10.2172/814619
Jubin, R T. Mon . "Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999". United States. https://doi.org/10.2172/814619. https://www.osti.gov/servlets/purl/814619.
@article{osti_814619,
title = {Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999},
author = {Jubin, R T},
abstractNote = {This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding quarter, MSRE Remediation Studies focused on recovery of {sup 233}U and its conversion to a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. Investigation of options for final disposition of the {sup 233}U inventory represents a new initiative within this area. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids.},
doi = {10.2172/814619},
url = {https://www.osti.gov/biblio/814619}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2001},
month = {4}
}