skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrofluoric Acid Corrosion Study of High-Alloy Materials

Abstract

A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensivemore » part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been proven to have a finite life due to failure, most often at the bellows flange ring. It was discovered that the entire bellows assembly was not all alloy 600 but that alloy 600 bellows had been welded to a stainless steel alloy 316 (SS-316) flange ring. A previous study documents and addresses this problem.1 The fabricators of the valves immediately corrected the problem and began fabricating all wetted parts of the bellows assembly from alloy 600. At the same time, the fabricators began to make alloy C-276 valve bodies and stem tips available for sale. This material is known to be superior to the alloy 400 valve bodies and stem tips of the standard UG valves that had already been installed in the CP. A decision was made to purchase alloy C-276 bodies and stem tips and to change out those alloy 400 components that had already been installed. Due to the enormity of this task (both in terms of time and money), it was desirable to determine the longevity of alloy C-276 vs alloy 400 components in a side-by-side comparison. Also of interest was the question of how long the new (all-alloy 600) bellows would last in comparison with the original alloy 600/SS-316 bellows. A basic HF corrosion test was proposed to compare corrosion rates of several high-alloy materials. Because much of the alloy 400 in the system had been gold plated, some gold-plated alloy 400 coupons were included. Due to time and funding limitations, actual CP variables such as temperature and pressure were not duplicated. Instead, a simple partial-immersion test at ambient temperature was conducted. The purpose of this test was to gain information on the rate of corrosion of different alloys in the CP and to attempt to derive some idea of their expected lifetimes in the operating environment.« less

Authors:
Publication Date:
Research Org.:
ORNL Oak Ridge National Laboratory (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
814438
Report Number(s):
ORNL/TM-2002/165
TRN: US0304210
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 11 Sep 2002
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; ALLOYS; AMBIENT TEMPERATURE; CHEMICAL COMPOSITION; CORROSION; HYDROFLUORIC ACID; MONEL 400; MSRE REACTOR; RADIATIONS; SODIUM FLUORIDES; STAINLESS STEELS

Citation Formats

Osborne, P E. Hydrofluoric Acid Corrosion Study of High-Alloy Materials. United States: N. p., 2002. Web. doi:10.2172/814438.
Osborne, P E. Hydrofluoric Acid Corrosion Study of High-Alloy Materials. United States. doi:10.2172/814438.
Osborne, P E. Wed . "Hydrofluoric Acid Corrosion Study of High-Alloy Materials". United States. doi:10.2172/814438. https://www.osti.gov/servlets/purl/814438.
@article{osti_814438,
title = {Hydrofluoric Acid Corrosion Study of High-Alloy Materials},
author = {Osborne, P E},
abstractNote = {A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been proven to have a finite life due to failure, most often at the bellows flange ring. It was discovered that the entire bellows assembly was not all alloy 600 but that alloy 600 bellows had been welded to a stainless steel alloy 316 (SS-316) flange ring. A previous study documents and addresses this problem.1 The fabricators of the valves immediately corrected the problem and began fabricating all wetted parts of the bellows assembly from alloy 600. At the same time, the fabricators began to make alloy C-276 valve bodies and stem tips available for sale. This material is known to be superior to the alloy 400 valve bodies and stem tips of the standard UG valves that had already been installed in the CP. A decision was made to purchase alloy C-276 bodies and stem tips and to change out those alloy 400 components that had already been installed. Due to the enormity of this task (both in terms of time and money), it was desirable to determine the longevity of alloy C-276 vs alloy 400 components in a side-by-side comparison. Also of interest was the question of how long the new (all-alloy 600) bellows would last in comparison with the original alloy 600/SS-316 bellows. A basic HF corrosion test was proposed to compare corrosion rates of several high-alloy materials. Because much of the alloy 400 in the system had been gold plated, some gold-plated alloy 400 coupons were included. Due to time and funding limitations, actual CP variables such as temperature and pressure were not duplicated. Instead, a simple partial-immersion test at ambient temperature was conducted. The purpose of this test was to gain information on the rate of corrosion of different alloys in the CP and to attempt to derive some idea of their expected lifetimes in the operating environment.},
doi = {10.2172/814438},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2002},
month = {9}
}

Technical Report:

Save / Share: