skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Support Services for Ceramic Fiber-Ceramic Matrix Composites

Technical Report ·
DOI:https://doi.org/10.2172/814089· OSTI ID:814089

Structural and functional materials used in solid- and liquid-fueled energy systems are subject to gas- and condensed-phase corrosion and erosion by entrained particles. For a given material, its temperature and the composition of the corrodents determine the corrosion rates, while gas flow conditions and particle aerodynamic diameters determine erosion rates. Because there are several mechanisms by which corrodents deposit on a surface, the corrodent composition depends not only on the composition of the fuel, but also on the temperature of the material and the size range of the particles being deposited. In general, it is difficult to simulate under controlled laboratory conditions all of the possible corrosion and erosion mechanisms to which a material may be exposed in an energy system. Therefore, with funding from the Advanced Research Materials Program, the University of North Dakota Energy & Environmental Research Center (EERC) is coordinating with NCC Engineering and the National Energy Technology Laboratory (NETL) to provide researchers with no-cost opportunities to expose materials in pilot-scale systems to conditions of corrosion and erosion similar to those occurring in commercial power systems. The EERC has two pilot-scale solid-fuel systems available for exposure of materials coupons. The slagging furnace system (SFS) was built under the DOE Combustion 2000 Program as a testing facility for advanced heat exchanger subsystems. It is a 2.5-MMBtu/hr (2.6 x 10{sup 6} kJ/hr) solid-fuel combustion system with exit temperatures of 2700 to 2900 F to ensure that the ash in the main combustor is molten and flowing. Sample coupons may be exposed in the system either within the slagging zone or near the convective air heater at 1800 F (980 C). In addition, a pilot-scale entrained-bed gasifier system known as the transport reactor development unit (TRDU) is available. Also operating at approximately 2.5 MMBtu/hr (2.6 x 10{sup 6} kJ/hr), it is a pressurized unit built to simulate the Kellogg entrained-bed gasifier in use at the Southern Company Services Wilsonville facility, but at 1/10 of the firing rate. At the exit of the unit is a large candle filter vessel typically operated at approximately 1000 F (540 C) in which coupons of materials can be inserted to test their resistance to gasifier ash and gas corrosion. The system also has ports for testing of hydrogen separation membranes that are suitably contained in a pressure housing. In addition, NETL is operating the combustion and environmental research facility (CERF). In recent years, the 0.5 MMBtu/hr (0.5 x 10{sup 6} kJ/hr) CERF has served as a host for exposure of over 60 ceramic and alloy samples at ambient pressure as well as at 200 psig (for tubes). Samples have been inserted in five locations covering 1700-2600 F (930-1430 C), with exposures exceeding 1000 hours. In the present program, the higher priority metals are to be tested at 1500-1600 F (820-870 C) in one CERF location and near 1800-2000 F (980-1090 C) at other locations to compare results with those from the EERC tests.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
814089
Report Number(s):
ORNL/SUB/94-SS112/05; TRN: US200316%%436
Resource Relation:
Other Information: PBD: 6 Jun 2000
Country of Publication:
United States
Language:
English