skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK

Abstract

OAK A271 MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK. Error field optimization on DIII-D tokamak plasma discharges has routinely been done for the last ten years with the use of the external ''n = 1 coil'' or the ''C-coil''. The optimum level of correction coil current is determined by the ability to avoid the locked mode instability and access previously unstable parameter space at low densities. The locked mode typically has toroidal and poloidal mode numbers n = 1 and m = 2, respectively, and it is this component that initially determined the correction coil current and phase. Realization of the importance of nearby n = 1 mode components m = 1 and m = 3 has led to a revision of the error field correction algorithm. Viscous and toroidal mode coupling effects suggested the need for additional terms in the expression for the radial ''penetration'' field B{sub pen} that can induce a locked mode. To incorporate these effects, the low density locked mode threshold database was expanded. A database of discharges at various toroidal fields, plasma currents, and safety factors was supplement4ed with data from an experiment in which the fields of the n = 1 coil andmore » C-coil were combined, allowing the poloidal mode spectrum of the error field to be varied. A multivariate regression analysis of this new low density locked mode database was done to determine the low density locked mode threshold scaling relationship n{sub e} {proportional_to} B{sub T}{sup -0.01} q{sub 95}{sup -0.79} B{sub pen} and the coefficients of the poloidal mode components in the expression for B{sub pen}. Improved plasma performance is achieved by optimizing B{sub pen} by varying the applied correction coil currents.« less

Authors:
;
Publication Date:
Research Org.:
GENERAL ATOMICS (US)
Sponsoring Org.:
(US)
OSTI Identifier:
813641
DOE Contract Number:  
AC03-99ER54463
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: THIS IS A PREPRINT OF A PAPER TO BE SUBMITTED FOR PUBLICATION IN NUCLEAR FUSION.; PBD: 1 Oct 2002
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; DOUBLET-3 DEVICE; ELECTRIC CURRENTS; INSTABILITY; OPTIMIZATION; PERFORMANCE; PLASMA; REGRESSION ANALYSIS; SAFETY

Citation Formats

SCOVILLE, JT, and LAHAYE, RJ. MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK. United States: N. p., 2002. Web.
SCOVILLE, JT, & LAHAYE, RJ. MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK. United States.
SCOVILLE, JT, and LAHAYE, RJ. Tue . "MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK". United States. https://www.osti.gov/servlets/purl/813641.
@article{osti_813641,
title = {MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK},
author = {SCOVILLE, JT and LAHAYE, RJ},
abstractNote = {OAK A271 MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK. Error field optimization on DIII-D tokamak plasma discharges has routinely been done for the last ten years with the use of the external ''n = 1 coil'' or the ''C-coil''. The optimum level of correction coil current is determined by the ability to avoid the locked mode instability and access previously unstable parameter space at low densities. The locked mode typically has toroidal and poloidal mode numbers n = 1 and m = 2, respectively, and it is this component that initially determined the correction coil current and phase. Realization of the importance of nearby n = 1 mode components m = 1 and m = 3 has led to a revision of the error field correction algorithm. Viscous and toroidal mode coupling effects suggested the need for additional terms in the expression for the radial ''penetration'' field B{sub pen} that can induce a locked mode. To incorporate these effects, the low density locked mode threshold database was expanded. A database of discharges at various toroidal fields, plasma currents, and safety factors was supplement4ed with data from an experiment in which the fields of the n = 1 coil and C-coil were combined, allowing the poloidal mode spectrum of the error field to be varied. A multivariate regression analysis of this new low density locked mode database was done to determine the low density locked mode threshold scaling relationship n{sub e} {proportional_to} B{sub T}{sup -0.01} q{sub 95}{sup -0.79} B{sub pen} and the coefficients of the poloidal mode components in the expression for B{sub pen}. Improved plasma performance is achieved by optimizing B{sub pen} by varying the applied correction coil currents.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2002},
month = {10}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: