skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprising Light Water Reactors and Accelerator-Driven Systems

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/812750· OSTI ID:812750
 [1]
  1. Univ. of New Mexico, Albuquerque, NM (United States)

Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shorter half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium (~40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
812750
Report Number(s):
LA-14052-T; TRN: US0303473
Resource Relation:
Other Information: TH: Thesis (Ph.D.); Submitted to the Univ. of New Mexico, Albuquerque, NM (US); PBD: 1 Jun 2003
Country of Publication:
United States
Language:
English