skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Verification, Validation, and Predictive Capability in Computational Engineering and Physics

Abstract

Developers of computer codes, analysts who use the codes, and decision makers who rely on the results of the analyses face a critical question: How should confidence in modeling and simulation be critically assessed? Verification and validation (V&V) of computational simulations are the primary methods for building and quantifying this confidence. Briefly, verification is the assessment of the accuracy of the solution to a computational model. Validation is the assessment of the accuracy of a computational simulation by comparison with experimental data. In verification, the relationship of the simulation to the real world is not an issue. In validation, the relationship between computation and the real world, i.e., experimental data, is the issue. This paper presents our viewpoint of the state of the art in V&V in computational physics. (In this paper we refer to all fields of computational engineering and physics, e.g., computational fluid dynamics, computational solid mechanics, structural dynamics, shock wave physics, computational chemistry, etc., as computational physics.) We do not provide a comprehensive review of the multitudinous contributions to V&V, although we do reference a large number of previous works from many fields. We have attempted to bring together many different perspectives on V&V, highlight those perspectivesmore » that are effective from a practical engineering viewpoint, suggest future research topics, and discuss key implementation issues that are necessary to improve the effectiveness of V&V. We describe our view of the framework in which predictive capability relies on V&V, as well as other factors that affect predictive capability. Our opinions about the research needs and management issues in V&V are very practical: What methods and techniques need to be developed and what changes in the views of management need to occur to increase the usefulness, reliability, and impact of computational physics for decision making about engineering systems? We review the state of the art in V&V over a wide range of topics, for example, prioritization of V&V activities using the Phenomena Identification and Ranking Table (PIRT), code verification, software quality assurance (SQA), numerical error estimation, hierarchical experiments for validation, characteristics of validation experiments, the need to perform nondeterministic computational simulations in comparisons with experimental data, and validation metrics. We then provide an extensive discussion of V&V research and implementation issues that we believe must be addressed for V&V to be more effective in improving confidence in computational predictive capability. Some of the research topics addressed are development of improved procedures for the use of the PIRT for prioritizing V&V activities, the method of manufactured solutions for code verification, development and use of hierarchical validation diagrams, and the construction and use of validation metrics incorporating statistical measures.Some of the implementation topics addressed are the needed management initiatives to better align and team computationalists and experimentalists in conducting validation activities, the perspective of commercial software companies, the key role of analysts and decision makers as code customers, obstacles to the improved effectiveness of V&V, effects of cost and schedule constraints on practical applications in industrial settings, and the role of engineering standards committees in documenting best practices for V&V.« less

Authors:
; ;
Publication Date:
Research Org.:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
809603
Report Number(s):
SAND2002-3769
TRN: US200307%%639
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Feb 2003
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; COMPUTER CODES; PHYSICS; QUALITY ASSURANCE; SHOCK WAVES; COMPUTERIZED SIMULATION; VALIDATION; VERIFICATION

Citation Formats

OBERKAMPF, WILLIAM L., TRUCANO, TIMOTHY G., and HIRSCH, CHARLES. Verification, Validation, and Predictive Capability in Computational Engineering and Physics. United States: N. p., 2003. Web. doi:10.2172/809603.
OBERKAMPF, WILLIAM L., TRUCANO, TIMOTHY G., & HIRSCH, CHARLES. Verification, Validation, and Predictive Capability in Computational Engineering and Physics. United States. doi:10.2172/809603.
OBERKAMPF, WILLIAM L., TRUCANO, TIMOTHY G., and HIRSCH, CHARLES. Sat . "Verification, Validation, and Predictive Capability in Computational Engineering and Physics". United States. doi:10.2172/809603. https://www.osti.gov/servlets/purl/809603.
@article{osti_809603,
title = {Verification, Validation, and Predictive Capability in Computational Engineering and Physics},
author = {OBERKAMPF, WILLIAM L. and TRUCANO, TIMOTHY G. and HIRSCH, CHARLES},
abstractNote = {Developers of computer codes, analysts who use the codes, and decision makers who rely on the results of the analyses face a critical question: How should confidence in modeling and simulation be critically assessed? Verification and validation (V&V) of computational simulations are the primary methods for building and quantifying this confidence. Briefly, verification is the assessment of the accuracy of the solution to a computational model. Validation is the assessment of the accuracy of a computational simulation by comparison with experimental data. In verification, the relationship of the simulation to the real world is not an issue. In validation, the relationship between computation and the real world, i.e., experimental data, is the issue. This paper presents our viewpoint of the state of the art in V&V in computational physics. (In this paper we refer to all fields of computational engineering and physics, e.g., computational fluid dynamics, computational solid mechanics, structural dynamics, shock wave physics, computational chemistry, etc., as computational physics.) We do not provide a comprehensive review of the multitudinous contributions to V&V, although we do reference a large number of previous works from many fields. We have attempted to bring together many different perspectives on V&V, highlight those perspectives that are effective from a practical engineering viewpoint, suggest future research topics, and discuss key implementation issues that are necessary to improve the effectiveness of V&V. We describe our view of the framework in which predictive capability relies on V&V, as well as other factors that affect predictive capability. Our opinions about the research needs and management issues in V&V are very practical: What methods and techniques need to be developed and what changes in the views of management need to occur to increase the usefulness, reliability, and impact of computational physics for decision making about engineering systems? We review the state of the art in V&V over a wide range of topics, for example, prioritization of V&V activities using the Phenomena Identification and Ranking Table (PIRT), code verification, software quality assurance (SQA), numerical error estimation, hierarchical experiments for validation, characteristics of validation experiments, the need to perform nondeterministic computational simulations in comparisons with experimental data, and validation metrics. We then provide an extensive discussion of V&V research and implementation issues that we believe must be addressed for V&V to be more effective in improving confidence in computational predictive capability. Some of the research topics addressed are development of improved procedures for the use of the PIRT for prioritizing V&V activities, the method of manufactured solutions for code verification, development and use of hierarchical validation diagrams, and the construction and use of validation metrics incorporating statistical measures.Some of the implementation topics addressed are the needed management initiatives to better align and team computationalists and experimentalists in conducting validation activities, the perspective of commercial software companies, the key role of analysts and decision makers as code customers, obstacles to the improved effectiveness of V&V, effects of cost and schedule constraints on practical applications in industrial settings, and the role of engineering standards committees in documenting best practices for V&V.},
doi = {10.2172/809603},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Feb 01 00:00:00 EST 2003},
month = {Sat Feb 01 00:00:00 EST 2003}
}

Technical Report:

Save / Share: