Predicting Function of Biological Macromolecules: A Summary of LDRD Activities: Project 10746
This LDRD project has involved the development and application of Sandia's massively parallel materials modeling software to several significant biophysical systems. They have been successful in applying the molecular dynamics code LAMMPS to modeling DNA, unstructured proteins, and lipid membranes. They have developed and applied a coupled transport-molecular theory code (Tramonto) to study ion channel proteins with gramicidin A as a prototype. they have used the Towhee configurational bias Monte-Carlo code to perform rigorous tests of biological force fields. they have also applied the MP-Sala reacting-diffusion code to model cellular systems. Electroporation of cell membranes has also been studied, and detailed quantum mechanical studies of ion solvation have been performed. In addition, new molecular theory algorithms have been developed (in FasTram) that may ultimately make protein solvation calculations feasible on workstations. Finally, they have begun implementation of a combined molecular theory and configurational bias Monte-Carlo code. They note that this LDRD has provided a basis for several new internal (e.g. several new LDRD) and external (e.g. 4 NIH proposals and a DOE/Genomes to Life) proposals.
- Research Organization:
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 805869
- Report Number(s):
- SAND2002-3743; TRN: US200303%%346
- Resource Relation:
- Other Information: PBD: 1 Nov 2002
- Country of Publication:
- United States
- Language:
- English
Similar Records
"K-Effective of the World" and Other Concerns for Monte Carlo Eigenvalue Calculations
Final report summary of LDRD 02-LW-022''Quantum Vibrations in Molecules: A New Frontier in Computational Chemistry''