skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

Technical Report ·
DOI:https://doi.org/10.2172/802865· OSTI ID:802865

In order to improve the hot corrosion resistance of conventional YSZ TBC system, a dense and continues overlay of Al{sub 2}O{sub 3} coating of about 25 {micro}m thick was deposited on the surface of TBC by EB-PVD and high velocity oxy-fuel (HVOF) spray techniques. Hot corrosion tests were carried out on the TBC with and without Al{sub 2}O{sub 3} coating in molten salts mixtures (Na{sub 2}SO{sub 4} + 5% V{sub 2}O5) at 950 C for 10h. The microstructures of TBC and overlay before and after exposure were examined by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD) and secondary ion mass spectrometry (SIMS). It has been found that TBC will react with V{sub 2}O{sub 5} to form YVO{sub 4}. A substantial amount of M-phase of ZrO{sub 2} was formed due to the leaching of Y{sub 2}O{sub 3} from YSZ. During hot corrosion test, there were no significant interactions between overlay Al{sub 2}O{sub 3} coating and molten salts. After exposure, the alumina coating, especially produced by HVOF, was still very dense and cover the surface of YSZ, although they had been translated to {alpha}-Al{sub 2}O{sub 3} from original {gamma}-Al{sub 2}O{sub 3}. As a result, Al{sub 2}O{sub 3} overlay coating decreased the penetration of salts into the YSZ and prevented the YSZ from the attack by molten salts containing vanadium. Accordingly, only a few M-phase was formed in YSZ TBC, compared with TBC without overlay coating. The penetration of salts into alumina coating was thought to be through microcracks formed in overlay Al{sub 2}O{sub 3} coating and at the interface between alumina and zirconia due to the presence of tensile stress in the alumina coating. In the next year, we will study the mechanisms of cracking of the overlay Al{sub 2}O{sub 3} layer. The hot corrosion test of TBC with EB-PVD deposited Al{sub 2}O{sub 3} coating will be again performed. However before hot corrosion tests, the post-annealing will be carried out in vacuum (residual pressure 10{sup -3} Pa) at 1273K for 1h in order to transform the as-sputtered Al{sub 2}O{sub 3} overlay to crystalline {alpha}-Al{sub 2}O{sub 3} overlay. The effect of thickness of Al{sub 2}O{sub 3} coating on hot corrosion resistance will also be investigated. We will prepare Al{sub 2}O{sub 3} coating by sol-gel method. The corrosion resistance of TBC with sol-gel Al{sub 2}O{sub 3} coating will be determined and discussed with the results of TBC with EB-PVD and HVOF Al{sub 2}O{sub 3} coating.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FC26-01NT41189
OSTI ID:
802865
Report Number(s):
FC26-01NT41189-04; TRN: US200223%%667
Resource Relation:
Other Information: PBD: 31 Aug 2002
Country of Publication:
United States
Language:
English