skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ATTRIBUTE VERIFICATION SYSTEMS WITH INFORMATION BARRIERS FOR CLASSIFIED FORMS OF PLUTONIUM IN THE TRILATERAL INITIATIVE

Abstract

No abstract prepared.

Authors:
; ;
Publication Date:
Research Org.:
Los Alamos National Lab., NM (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
788212
Report Number(s):
LA-UR-01-5567
TRN: US0200367
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Oct 2001
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; PLUTONIUM; VERIFICATION; CLASSIFIED INFORMATION; SHAPE; NON-PROLIFERATION TREATY

Citation Formats

D. G. LANGNER, S. T. HSUE, and ET AL. ATTRIBUTE VERIFICATION SYSTEMS WITH INFORMATION BARRIERS FOR CLASSIFIED FORMS OF PLUTONIUM IN THE TRILATERAL INITIATIVE. United States: N. p., 2001. Web.
D. G. LANGNER, S. T. HSUE, & ET AL. ATTRIBUTE VERIFICATION SYSTEMS WITH INFORMATION BARRIERS FOR CLASSIFIED FORMS OF PLUTONIUM IN THE TRILATERAL INITIATIVE. United States.
D. G. LANGNER, S. T. HSUE, and ET AL. Mon . "ATTRIBUTE VERIFICATION SYSTEMS WITH INFORMATION BARRIERS FOR CLASSIFIED FORMS OF PLUTONIUM IN THE TRILATERAL INITIATIVE". United States. doi:. https://www.osti.gov/servlets/purl/788212.
@article{osti_788212,
title = {ATTRIBUTE VERIFICATION SYSTEMS WITH INFORMATION BARRIERS FOR CLASSIFIED FORMS OF PLUTONIUM IN THE TRILATERAL INITIATIVE},
author = {D. G. LANGNER and S. T. HSUE and ET AL},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Oct 01 00:00:00 EDT 2001},
month = {Mon Oct 01 00:00:00 EDT 2001}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • A team of technical experts from the Russian Federation, the International Atomic Energy Agency (IAEA), and the United States has been working since December 1997 to develop a toolkit of instruments that could be used to verify plutonium-bearing items that have classified characteristics in nuclear weapons states. This suite of instruments is similar in many ways to standard safeguards equipment and includes high-resolution gamma-ray spectrometers, neutron multiplicity counters, gross neutron counters, and gross gamma-ray detectors. In safeguards applications, this equipment is known to be robust and authentication methods are well understood. However, this equipment is very intrusive, and a traditionalmore » safeguards application of such equipment for verification of materials with classified characteristics would reveal classified information to the inspector. Several enabling technologies have been or are being developed to facilitate the use of these trusted, but intrusive safeguards technologies. In this paper, these new technologies will be described.« less
  • Although the detection techniques used for measuring classified materials are very similar to those used in unclassified measurements, the surrounding packaging is generally very different. If iZ classified item is to be measured, an information barrier is required to protect any classified data acquired. This information barrier must protect the classified information while giving the inspector confidence that the unclassified outputs accurately reflect the classified inputs, Both information barrier and authentication considerations must be considered during all phases of system design and fabrication. One example of such a measurement system is the attribute measurement system (termed the AVNG) designed formore » the: Trilateral Initiative. We will discuss the integration of information barrier components into this system as well as the effects of an information barrier (including authentication) concerns on the implementation of the detector systems.« less
  • An attribute verification system (AVNG) with information barriers for mass and isotopics measurements has been designed and its fabrication is nearly completed. The AVNG is being built by scientists at the Russian Federal Nuclear Center-VNIIEF, with support of Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Such a system could be used to verify the presence of several unclassified attributes of classified material with no classified information release. The system is comprised of a neutron multiplicity counter and gamma-spectrometry system based on a high purity germanium gamma detector (nominal relative efficiency {at} 1332 keV 50%) and digitalmore » gamma-ray spectrometer DSPEC{sup PLUS}. The neutron multiplicity counter is a three ring counter with 164 {sup 3}He tubes. The system was designed to measure prototype containers 491 mm in diameter and 503 mm high. This paper provides a brief history of the project and documents the progress of this effort with drawings and photographs.« less
  • This report describes the software development for the plutonium attribute verification system--AVNG. A brief synopsis of the technical solution for the measurement system is presented. The main tasks for the software development that is underway are formulated. The development tasks are shown in software structural flowcharts, measurement system state diagram and a description of the software. The current status of the AVNG software development is elucidated.
  • An attribute verification system (AVNG) with information barriers for mass and isotopics measurements has been designed and its fabrication is nearly completed. The AVNG is being built by scientists at the Russian Federal Nuclear Center-VNIIEF, with support of Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Such a system could be used to verify the presence of several unclassified attributes of classified material with no classified information release. The system is comprised of a neutron multiplicity counter and gamma-spectrometry system based on a high purity germanium gamma detector (nominal relative efficiency @ 1332 keV 50%) and digitalmore » gamma-ray spectrometer DSPEC{sup PLUS}. The neutron multiplicity counter is a three ring counter with 164 {sup 3}He tubes. The system was designed to measure prototype containers 491 mm in diameter and 503 mm high. This paper provides a brief history of the project and documents the progress of this effort with drawings and photographs.« less