skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PERFORMANCE OF A NOVEL SQUID-BASED SUPERCONDUCTING IMAGING-SURFACE MAGNETOENCEPHALOGRAPHY SYSTEM

Abstract

No abstract prepared.

Authors:
; ;
Publication Date:
Research Org.:
Los Alamos National Lab., NM (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
785155
Report Number(s):
LA-UR-01-4892
TRN: US0302077
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Aug 2001
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; PERFORMANCE; SUPERCONDUCTIVITY; IMAGES; LANL

Citation Formats

R. H. KRAUS, A. MATLACHOV, and ET AL. PERFORMANCE OF A NOVEL SQUID-BASED SUPERCONDUCTING IMAGING-SURFACE MAGNETOENCEPHALOGRAPHY SYSTEM. United States: N. p., 2001. Web.
R. H. KRAUS, A. MATLACHOV, & ET AL. PERFORMANCE OF A NOVEL SQUID-BASED SUPERCONDUCTING IMAGING-SURFACE MAGNETOENCEPHALOGRAPHY SYSTEM. United States.
R. H. KRAUS, A. MATLACHOV, and ET AL. Wed . "PERFORMANCE OF A NOVEL SQUID-BASED SUPERCONDUCTING IMAGING-SURFACE MAGNETOENCEPHALOGRAPHY SYSTEM". United States. doi:. https://www.osti.gov/servlets/purl/785155.
@article{osti_785155,
title = {PERFORMANCE OF A NOVEL SQUID-BASED SUPERCONDUCTING IMAGING-SURFACE MAGNETOENCEPHALOGRAPHY SYSTEM},
author = {R. H. KRAUS and A. MATLACHOV and ET AL},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Aug 01 00:00:00 EDT 2001},
month = {Wed Aug 01 00:00:00 EDT 2001}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Performance for a recently completed whole-head magnetoencephalography system using a superconducting imaging-surface (SIS) surrounding an array of 150 SQUID magnetometers is reported. The helmetlike SIS is hemispherical in shape with a brim. Conceptually, the SIS images nearby sources onto the SQUIDs while shielding sensors from distant 'noise' sources. A finite element method (FEM) description using the as-built geometry was developed to describe the SIS effect on source fields by imposing B(surface)=0. Sensors consist of 8mm x 8mm SQUID magnetometers with 0.84nT/F sensitivity and <3fT/vHz noise. A series of phantom experiments to verify system efficacy have been completed. Simple dry-wire phantomsmore » were used to eliminate model dependence from our results. Phantom coils were distributed throughout the volume encompassed by the array with a variety of orientations. Each phantom coil was precisely machined and located to better than 25{micro}m and 10mRad accuracy. Excellent agreement between model-calculated and measured magnetic field distributions of all phantom coil positions and orientations was found. Good agreement was found between modeled and measured shielding of the SQUIDs from sources external to the array showing significant frequency-independent shielding. Phantom localization precision was better than 0.5mm at all locations with a mean of better than 0.3mm.« less
  • Magnetoencephalography (MEG) follows from the initial fundamental work of Cohen in 1968 and development by several groups, most notably at MIT and at NYU, based on the development of the Superconducting QUantum Interference Device (SQUID) using the Josephson effect. The SQUID`s incredible sensitivity to magnetic fields permits the measurement of the very weak magnetic fields emitted from the human brain due to intracellular neuronal currents. Current growth in MEG is dominated by multiple sensor arrays covering much of the head. These new large devices have primarily been developed and made commercially available by several companies including BTI in the US,more » CTF in Canada, and Neuromag in Finland. Large projects are also in place in Japan. These systems contain more than 100 sensors spaced at various intervals over the head using various configurations of magnetometers and gradiometers. The different designs available on the market are driven by factors such as detection efficiency, cost, and application. They now present a completely novel whole-head SQUID array system using a superconducting imaging-surface gradiometer concept derived at Los Alamos. Preliminary tests have demonstrated higher performance, lower noise, and additional shielding of background fields while using simpler fabrication techniques than existing whole-head MEG systems, which should reduce production costs.« less
  • Design and performance for a recently completed whole-head magnetoencephalography (MEG) system using a superconducting imaging-surface (SIS) surrounding an array of SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. The SIS images nearby sources while shields sensors from ambient magnetic noise. The shielding factor depends on magnetometer position and orientation. Typical shielding values of 200 in central sulcus area have been observed. Nine reference channels form three vector magnetometers, which are placed outside SIS. Signal channels consist of 149 SQUID magnetometers with 0.84nT/{Phi}{sub 0} field sensitivity and less then 3 fT/{radical}Hz noise. Typical SQUID -more » room temperature separations are about 20mm in the cooled state. Twelve 16-channel flux-lock loop units are connected to two 96-channel control units allowing up to 192 total SQUID channels. The control unit includes signal conditioning circuits as well as system test and control circuits. After conditioning all signals are fed to 192-channel, 24-bit data acquisition system capable of sampling up to 48kSa/sec/channel. The SIS-MEG system enables high-quality human functional brain data to be recorded in a one-layer magnetically shielded room.« less
  • A superconducting imaging-surface system was constructed using 12 coplanar thin-film SQUID magnetometers located parallel to and spaced 2 cm from a 25 cm diameter lead imaging-plane. Some measurements included two additional sensors on the back side of the superconducting imaging-plane to study the field symmetry for the system. Performance was measured in a shielded can and in the open laboratory environment. Data from this system has been used to: (1) understand the noise characteristics of the dewar-SQUID imaging plate arrangement, (2) to verify the imaging principle, (c) measure the background rejection factor of the imaging plane, and (4) compare superconductingmore » materials for the imaging plane. A phantom source field was measured at the sensors as a function of phantom distance from the sensor array to verify the imaging theory. Both the shape and absolute values of the measured and predicted curves agree very well indicating the system is behaving as a gradiometer in accordance with theory. The output from SQUIDs located behind the imaging surface that sense background fields can be used for software or analog background cancellation. Fields arising from sources close to the imaging plane were shielded from the background sensors by more than a factor of 1000. Measurement of the symmetry of sensor sensitivity to uniform fields exactly followed theoretical predictions.« less