skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ANALYSIS OF T LYMPHOCYTE TURNOVER RATES USING NOVEL MODELS FOR THE STUDY OF DEUTERATED GLUCOSE UPTAKE

Abstract

No abstract prepared.

Authors:
; ;
Publication Date:
Research Org.:
Los Alamos National Lab., NM (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
784128
Report Number(s):
LA-UR-01-4305
TRN: US200306%%139
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Aug 2001
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; GLUCOSE; LYMPHOCYTES; DEUTERATION; LANL

Citation Formats

R. M. RIBEIRO, H. MOHRI, and ET AL. ANALYSIS OF T LYMPHOCYTE TURNOVER RATES USING NOVEL MODELS FOR THE STUDY OF DEUTERATED GLUCOSE UPTAKE. United States: N. p., 2001. Web.
R. M. RIBEIRO, H. MOHRI, & ET AL. ANALYSIS OF T LYMPHOCYTE TURNOVER RATES USING NOVEL MODELS FOR THE STUDY OF DEUTERATED GLUCOSE UPTAKE. United States.
R. M. RIBEIRO, H. MOHRI, and ET AL. Wed . "ANALYSIS OF T LYMPHOCYTE TURNOVER RATES USING NOVEL MODELS FOR THE STUDY OF DEUTERATED GLUCOSE UPTAKE". United States. doi:. https://www.osti.gov/servlets/purl/784128.
@article{osti_784128,
title = {ANALYSIS OF T LYMPHOCYTE TURNOVER RATES USING NOVEL MODELS FOR THE STUDY OF DEUTERATED GLUCOSE UPTAKE},
author = {R. M. RIBEIRO and H. MOHRI and ET AL},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Aug 01 00:00:00 EDT 2001},
month = {Wed Aug 01 00:00:00 EDT 2001}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • No abstract prepared.
  • We have developed and validated a new method to measure simultaneously glucose turnover, alanine turnover, and gluconeogenesis in human, in steady and non-steady states, using a double stable-isotope-labeled tracer infusion and GC-MS analysis. The method is based on the concomitant infusion and dilution of D-(2,3,4,6,6-2H5)glucose and L-(1,2,3-13C3)alanine. The choice of the tracers was done on the basis of a minimal overlap between the ions of interest and those arising from natural isotopic abundances. Alanine was chosen as the gluconeogenic substrate because it is the major gluconeogenic amino acid extracted by the liver and, with lactate, constitutes the bulk of themore » gluconeogenic precursors. The method was validated by comparing the results obtained during simultaneous infusion of trace amounts of both stable isotope labeled compounds with the radioactive tracers (D-(3-3H)glucose and L-(1,2,3-14C3)alanine) in a normal and a diabetic subject; the radiolabeled tracers were used as the accepted reference procedure. A slight overestimation of glucose turnover (7.3 versus 6.8 in normal and 10.8 versus 9.2 mumol/kg min in diabetic subject) was noticed when the stable isotope-labeled tracers were used. For the basal turnover rate of alanine, similar values were obtained with both methods (6.2 mumol/kg min). For gluconeogenesis, higher values were observed in the basal state with the stable isotopes (0.42 versus 0.21 mumol/kg min); however, these differences disappeared in the postprandial period after the ingestion of a mixed meal. Despite those minor differences, the overall correlation with the reference method was excellent for glucose turnover (r = 0.87) and gluconeogenesis (r = 0.86).« less
  • An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin (IAPS-Fsk), has been synthesized, purified, and characterized. The K/sub i/ for inhibition of 3-0-methylglucose transport by TAPS-Fsk in human erythrocytes was found to be 0.1 uM. The carrier-free radioiodinated label has been shown to be a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes with 1-10 nM (I-125)IAPS-Fsk and analysis by SDS-PAGE showed specific derivatization of a broad band with an apparent molecular weight of 40-70 kDa. Photoincorporation using 2 nM (I-125)IAPS-Fsk was protected with D-glucose, cytochalasin B, and forskolin. No protection was observed withmore » L-glucose. Endo-B-galactosidase digestion and trypsinization of (I-125)IAPS-Fsk labelled erythrocytes reduced the specifically radiolabelled transporter to 40 kDa and 18 kDa respectively. (I-125)-IAPS-Fsk will be used to study the structural aspects of the glucose transporter.« less
  • A deterministic modeling approach was used to evaluate risks to wildlife receptors at a contaminated site in Maryland. Models to predict daily doses of contaminants to ecological receptors used single point estimates for media contaminant concentrations and for ecological exposure factors. Predicted doses exceeding contaminant- and species-specific dose values were considered to be indicative of adverse risk, and the model results are being used to develop and evaluate remedial alternatives for the site. Risk estimates based on the deterministic approach predicted daily contaminant doses exceeding acceptable dose levels for more than half of the modeled receptors. Ecological risks were alsomore » evaluated using a stochastic approach. In this approach the input parameters that most greatly affected the deterministic model outcome were identified using sensitivity analyses. Statistical distributions were assigned to these parameters, and Monte Carlo simulations of the models were conducted to generate probability density functions of contaminant doses. The resulting probability density functions were then used to quantify the probability that contaminant uptake would exceed the acceptable dose values. Models using Monte Carlo analyses identified only a low probability of exceeding the acceptable dose level for most of the contaminants and receptors. The differences in the risks predicted using the deterministic and stochastic models would likely result in the selection of different remediation goals and actions for the same area of contamination. Given the different interpretations that could result from these two modeling approaches, the authors recommend that both techniques be considered for estimating risks to ecological receptors.« less