skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EFFICIENT FEATURE-BASED CONTOUR EXTRACTION

Abstract

No abstract prepared.

Authors:
Publication Date:
Research Org.:
Los Alamos National Lab., NM (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
783795
Report Number(s):
LA-UR-01-4205
TRN: US200306%%9
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Jul 2001
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; COMPLEX TERRAIN; DATA ANALYSIS; MAPS; COMPUTER GRAPHICS

Citation Formats

J. R. GATTIKER. EFFICIENT FEATURE-BASED CONTOUR EXTRACTION. United States: N. p., 2001. Web.
J. R. GATTIKER. EFFICIENT FEATURE-BASED CONTOUR EXTRACTION. United States.
J. R. GATTIKER. Sun . "EFFICIENT FEATURE-BASED CONTOUR EXTRACTION". United States. doi:. https://www.osti.gov/servlets/purl/783795.
@article{osti_783795,
title = {EFFICIENT FEATURE-BASED CONTOUR EXTRACTION},
author = {J. R. GATTIKER},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jul 01 00:00:00 EDT 2001},
month = {Sun Jul 01 00:00:00 EDT 2001}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Extraction of contours in binary images is an important element of object recognition. This paper discusses a more efficient approach to contour representation and generation. This approach defines a bounding polygon as defined by its vertices rather than by all enclosing pixels, which in itself is an effective representation. These corners can be identified by convolution of the image with a 3 x 3 filter. When these corners are organized by their connecting orientation, identified by the convolution, and type, inside or outside, connectivity characteristics can be articulated to highly constrain the task of sorting the vertices into ordered boundarymore » lists. The search for the next bounding polygon vertex is reduced to a one dimensional minimum distance search rather than the standard, more intensive two dimensional nearest Euclidean neighbor search.« less
  • We have developed a video detection algorithm for measuring the residue left on a printed circuit board after a soldering process. Oblique lighting improves the contrast between the residue and the board substrate, but also introduces an illumination gradient. The algorithm uses the Boundary Contour System/Feature Contour System to produce an idealized clean board image by discounting the illuminant, detecting trace boundaries, and filling the trace and substrate regions. The algorithm then combines the original input image and ideal image using mathematical models of the normal and inverse Weber Law to enhance the residue on the traces and substrate. Themore » paper includes results for a clean board and one with residue.« less
  • We have developed a video detection algorithm for measuring the residue left on a printed circuit board after a soldering process. Oblique lighting improves the contrast between the residue and the board substrate, but also introduces an illumination gradient. The algorithm uses the Boundary Contour System/Feature Contour System to produce an idealized clean board image by discounting the illuminant, detecting trace boundaries, and filling the trace and substrate regions. The algorithm then combines the original input image and ideal image using mathematical models of the normal and inverse Weber Law to enhance the residue on the traces and substrate. Themore » paper includes results for a clean board and one with residue.« less
  • This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival ormore » standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.« less
  • This paper describes a topological approach for simplifying continuous functions defined on volumetric domains. We present a combinatorial algorithm that simplifies the Morse-Smale complex by repeated application of two atomic operations that removes pairs of critical points. The Morse-Smale complex is a topological data structure that provides a compact representation of gradient flows between critical points of a function. Critical points paired by the Morse-Smale complex identify topological features and their importance. The simplification procedure leaves important critical points untouched, and is therefore useful for extracting desirable features. We also present a visualization of the simplified topology.