skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: USE OF EXISTING LIGHT-WATER REACTORS AND AN ACCELERATOR-DRIVEN SYSTEM FOR THE TRANSMUTATION OF SPENT NUCLEAR FUEL

Abstract

No abstract prepared.

Authors:
Publication Date:
Research Org.:
Los Alamos National Lab., NM (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
783381
Report Number(s):
LA-UR-01-3849
TRN: US0110555
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Jun 2001
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 22 GENERAL STUDIES OF NUCLEAR REACTORS; SPENT FUELS; ACCELERATOR DRIVEN TRANSMUTATION; WATER COOLED REACTORS; PLANNING

Citation Formats

H. R. TRELLUE. USE OF EXISTING LIGHT-WATER REACTORS AND AN ACCELERATOR-DRIVEN SYSTEM FOR THE TRANSMUTATION OF SPENT NUCLEAR FUEL. United States: N. p., 2001. Web.
H. R. TRELLUE. USE OF EXISTING LIGHT-WATER REACTORS AND AN ACCELERATOR-DRIVEN SYSTEM FOR THE TRANSMUTATION OF SPENT NUCLEAR FUEL. United States.
H. R. TRELLUE. 2001. "USE OF EXISTING LIGHT-WATER REACTORS AND AN ACCELERATOR-DRIVEN SYSTEM FOR THE TRANSMUTATION OF SPENT NUCLEAR FUEL". United States. doi:. https://www.osti.gov/servlets/purl/783381.
@article{osti_783381,
title = {USE OF EXISTING LIGHT-WATER REACTORS AND AN ACCELERATOR-DRIVEN SYSTEM FOR THE TRANSMUTATION OF SPENT NUCLEAR FUEL},
author = {H. R. TRELLUE},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2001,
month = 6
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The use of light water reactors (LWRs) for the destruction of plutonium and other actinides [especially those in spent nuclear fuel (SNF)] is being examined worldwide. One possibility for transmutation of this material is the use of mixed-oxide (MOX) fuel, which is a combination of uranium and plutonium oxides. MOX fuel is used in nuclear reactors worldwide, so a large experience base for its use already exists. However, to limit implementation of SNF transmutation to only a fraction of the LWRs in the United States with a reasonable number of license extensions, full cores of MOX fuel probably are required.more » This paper addresses the logistics associated with using LWRs for this mission and the design issues required for full cores of MOX fuel. Given limited design modifications, this paper shows that neutronic safety conditions can be met for full cores of MOX fuel with up to 8.3 wt% of plutonium.« less
  • Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shortermore » half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium (~40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation.« less
  • No abstract prepared.
  • Realistic truck/rail modal fractions are specifically needed to support the Monitored Retrievable Storage (MRS) and repository facility designs and envirionmental assessment activities. The objective of this study was to evaluate the spent fuel shipping cask handling capabilities at operating and planned commercial LWRs and use this information to estimate realistic truck/rail modal fractions. The cask handling parameter data collected in this study includes cask handling crane capabilities, dimensions of loading pools, structural limits, availability of rail service, past experience with spent fuel shipments (i.e., which cask was used.), and any other conditions which could impede or preclude use of amore » particular shipping cask. The results of this evaluation are presented for each reactor. A summary of the results which indicates the number of plants that are capable of handling each transport mode is presented. Note that two types of highway shipments are considered; legal-weight truck (LWT) and overweight truck (OWT). The primary differences between these two types of highway shipments are the size and cargo capacity of the spent fuel shipping casks. The OWT cask is roughly 50% heavier, 50% larger in diameter, and has a 300% larger cargo capacity. As a result of this size differential, some plants are capable of handling LWT casks but not OWT casks.« less