skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Discovery of the Point-Like Structure of Matter

Abstract

The organizers of this workshop have invited me here to reminisce. The assigned subject is the proton and how it lost its identity as an elementary particle. In its youth, the proton was very much neglected. It was overweight and introverted, and all the attention went to its lighter and more gregarious companion, the electron. The electron was noticed first and was accepted as a constituent of all matter almost immediately. As a result, the chemical ''elements'' lost their elementary status. With Rutherford's discovery of the nuclear atom it became clear that there was something rather small inside the hydrogen atom with nearly 2000 times the mass of the electron, and equal but opposite charge. That something was called the ''positive electron'' or ''H-particle'' until 1930 or so. The Standard Model in those days had only two elementary particles with mass (whether light quanta might also be a particle was a subject of debate) and the only known forces were electromagnetic and gravitational. In the early days it was assumed that there were some extra positive electrons (each paired with a negative electron) inside nuclei other than hydrogen, to account for the observation that the atomic weight is equal tomore » or greater than twice the atomic number. In 1914, Rutherford's group at Manchester turned its attention to alpha-particle scattering experiments on light nuclei. The group was intrigued by a calculation predicting that forward-scattered H-particles would have a much greater range than the incoming alpha particles. An experiment, the very first on the proton, verified the prediction experimentally and Marsden and Lantsberry concluded that the Coulomb field of the H particle could account for their results (at distances of closest approach that approximated 10{sup -13} cms.) World War I stopped most of the research in Rutherford's laboratory when many of the young scientists left to serve in the armed forces. Rutherford himself continued to do some research in parallel with his war work and in his spare time he discovered the first nuclear reaction on a nitrogen target along with anomalies in the scattering of alpha particles from hydrogen. Much improved measurements on hydrogen came after the war when Chadwick and Bieler, (now with Rutherford at the Cavendish) redid the earlier experiments, finding that there were too many H particles at large angles when the distance of closest approach was less than 3.5 x 10{sup -13} cms. In their 1921 paper, Chadwick and Bieler stated that there must be ''forces of very great intensity'' acting at small distances. Great significance was attached to the fact that such distances are about the same as the classical electron radius. Compare the modest activity on the proton with the intense effort (both experimental and theoretical) on electrons after the war. Progress was swift and by 1929, the basics needed for understanding the atom were in place, although the nucleus was still not understood at all. Only the charge, mass and spin (but not the magnetic moment) of the proton were known. In 1920 Rutherford had suggested that combinations of positive and negative electrons in the nucleus formed a neutral entity where the ''ordinary properties of the electrons are suppressed''. By the end of the decade there was growing recognition of the problems inherent in assuming the presence of electrons in the nucleus though it still seemed obvious that they had to be in there somewhere.« less

Authors:
Publication Date:
Research Org.:
Stanford Linear Accelerator Center, Menlo Park, CA (US)
Sponsoring Org.:
USDOE Office of Energy Research (ER) (US)
OSTI Identifier:
765018
Report Number(s):
SLAC-PUB-8640
Journal ID: ISSN 1364--503X; TRN: US0004998
DOE Contract Number:  
AC03-76SF00515
Resource Type:
Conference
Resource Relation:
Journal Volume: 359; Journal Issue: 1779; Conference: Quark Structure of Matter, London (GB), 05/24/2000--05/25/2000; Other Information: PBD: 28 Sep 2000
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; ELEMENTARY PARTICLES; PARTICLE PROPERTIES; HISTORICAL ASPECTS; RESEARCH PROGRAMS; Particle Properties

Citation Formats

Taylor, Richard E. The Discovery of the Point-Like Structure of Matter. United States: N. p., 2000. Web. doi:10.1098/rsta.2000.0723.
Taylor, Richard E. The Discovery of the Point-Like Structure of Matter. United States. doi:10.1098/rsta.2000.0723.
Taylor, Richard E. Thu . "The Discovery of the Point-Like Structure of Matter". United States. doi:10.1098/rsta.2000.0723. https://www.osti.gov/servlets/purl/765018.
@article{osti_765018,
title = {The Discovery of the Point-Like Structure of Matter},
author = {Taylor, Richard E},
abstractNote = {The organizers of this workshop have invited me here to reminisce. The assigned subject is the proton and how it lost its identity as an elementary particle. In its youth, the proton was very much neglected. It was overweight and introverted, and all the attention went to its lighter and more gregarious companion, the electron. The electron was noticed first and was accepted as a constituent of all matter almost immediately. As a result, the chemical ''elements'' lost their elementary status. With Rutherford's discovery of the nuclear atom it became clear that there was something rather small inside the hydrogen atom with nearly 2000 times the mass of the electron, and equal but opposite charge. That something was called the ''positive electron'' or ''H-particle'' until 1930 or so. The Standard Model in those days had only two elementary particles with mass (whether light quanta might also be a particle was a subject of debate) and the only known forces were electromagnetic and gravitational. In the early days it was assumed that there were some extra positive electrons (each paired with a negative electron) inside nuclei other than hydrogen, to account for the observation that the atomic weight is equal to or greater than twice the atomic number. In 1914, Rutherford's group at Manchester turned its attention to alpha-particle scattering experiments on light nuclei. The group was intrigued by a calculation predicting that forward-scattered H-particles would have a much greater range than the incoming alpha particles. An experiment, the very first on the proton, verified the prediction experimentally and Marsden and Lantsberry concluded that the Coulomb field of the H particle could account for their results (at distances of closest approach that approximated 10{sup -13} cms.) World War I stopped most of the research in Rutherford's laboratory when many of the young scientists left to serve in the armed forces. Rutherford himself continued to do some research in parallel with his war work and in his spare time he discovered the first nuclear reaction on a nitrogen target along with anomalies in the scattering of alpha particles from hydrogen. Much improved measurements on hydrogen came after the war when Chadwick and Bieler, (now with Rutherford at the Cavendish) redid the earlier experiments, finding that there were too many H particles at large angles when the distance of closest approach was less than 3.5 x 10{sup -13} cms. In their 1921 paper, Chadwick and Bieler stated that there must be ''forces of very great intensity'' acting at small distances. Great significance was attached to the fact that such distances are about the same as the classical electron radius. Compare the modest activity on the proton with the intense effort (both experimental and theoretical) on electrons after the war. Progress was swift and by 1929, the basics needed for understanding the atom were in place, although the nucleus was still not understood at all. Only the charge, mass and spin (but not the magnetic moment) of the proton were known. In 1920 Rutherford had suggested that combinations of positive and negative electrons in the nucleus formed a neutral entity where the ''ordinary properties of the electrons are suppressed''. By the end of the decade there was growing recognition of the problems inherent in assuming the presence of electrons in the nucleus though it still seemed obvious that they had to be in there somewhere.},
doi = {10.1098/rsta.2000.0723},
journal = {},
number = 1779,
volume = 359,
place = {United States},
year = {Thu Sep 28 00:00:00 EDT 2000},
month = {Thu Sep 28 00:00:00 EDT 2000}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: