skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report: Scintillator Materials for Medical Applications, December 1, 1997 - November 30, 1999

Technical Report ·
DOI:https://doi.org/10.2172/763152· OSTI ID:763152

From the very beginning of our program we regarded the understanding of the scintillation mechanism as our primary mission. If in addition this understanding could lead to the discovery of a new material, so much the better. When we began this work some nine years ago, the theoretical basis for the scintillation phenomenon was in disarray. The initial and final steps were reasonably well characterized, but there was no consensus on the crucial intermediate, the transfer of energy from the lattice to the emitting center. In the over 40 publications that resulted from this program, we demonstrated that despite the highly insulating nature of the hosts and the great magnitude of the band gap, the primary means of transport is through mobile charge carriers and their sequential capture by the emitting center. Although radical at the time, this picture is now generally accepted throughout the field. Subsequently, we also recognized the critical role that trapping centers localized at lattice defects can play in the process, not merely as passive sources of loss but as active participants in the kinetics. In this sense shallow traps can wreak more havoc than deep ones, impeding the rate by which carriers can reach the emitting centers and seriously slowing the resulting decay. And we established low-temperature thermoluminescence as a comprehensive tool for quantizing these effects. As for new and better materials, our work also had an impact. We were among the first to recognize the potential of LuAlO{sub 3} (lutetium aluminum perovskite, or LuAP) as a detector for PET applications. Although this material has not supplanted LuSiO{sub 5} (lutetium oxysilicate, or LSO) in terms of light output or absence of afterglow, LuAP still exhibits by far the highest figure of merit (light output divided by decay time) of any scintillator material currently known. Our work has also bought into stark view the dismaying realization of just how improbable it is that a material will ever be found that will be capable of any more than an incremental improvement in performance.

Research Organization:
Boston University, Boston, MA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FG02-90ER61033
OSTI ID:
763152
Resource Relation:
Other Information: PBD: 1 May 2000
Country of Publication:
United States
Language:
English

Similar Records

Lutetium aluminate: Spectroscopic and scintillation properties
Journal Article · Sat Jun 01 00:00:00 EDT 1996 · IEEE Transactions on Nuclear Science · OSTI ID:763152

Gamma ray detection properties of lutetium aluminate scintillators
Journal Article · Sat Jun 01 00:00:00 EDT 1996 · IEEE Transactions on Nuclear Science · OSTI ID:763152

LuAlO{sub 3}: A high density, high speed scintillator for gamma detection
Conference · Tue Nov 01 00:00:00 EST 1994 · OSTI ID:763152