skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Leak-Path Factor Analysis for the Nuclear Materials Storage Facility

Abstract

Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO{sub 2} aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO{sub 2} particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient featuresmore » of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling.« less

Authors:
;
Publication Date:
Research Org.:
Los Alamos National Lab., NM (US)
Sponsoring Org.:
USDOE Office of Defense Programs (DP) (US)
OSTI Identifier:
762882
Report Number(s):
LA-UR-99-2513
TRN: US0100139
DOE Contract Number:  
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Safety Analysis Workshop, Portland, OR (US), 06/13/1999--06/18/1999; Other Information: PBD: 13 Jun 1999
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; AIR INFILTRATION; HEAT TRANSFER; SAFETY ANALYSIS; STORAGE

Citation Formats

Shaffer, C., and Leonard, M. Leak-Path Factor Analysis for the Nuclear Materials Storage Facility. United States: N. p., 1999. Web.
Shaffer, C., & Leonard, M. Leak-Path Factor Analysis for the Nuclear Materials Storage Facility. United States.
Shaffer, C., and Leonard, M. Sun . "Leak-Path Factor Analysis for the Nuclear Materials Storage Facility". United States. https://www.osti.gov/servlets/purl/762882.
@article{osti_762882,
title = {Leak-Path Factor Analysis for the Nuclear Materials Storage Facility},
author = {Shaffer, C. and Leonard, M.},
abstractNote = {Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO{sub 2} aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO{sub 2} particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient features of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {1999},
month = {6}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: