skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SQUIDs as Detectors in a New Experiment to Measure the Neutron Electric Dipole Moment

Conference ·
OSTI ID:762811

A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10{sup {minus}28} ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large ({approximately}100 cm{sup 2}) pick-up coils to measure the precession frequency of the spin-polarized {sup 3}He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the {sup 3}He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of {approximately}2x10{sup {minus}16} Tm{sup 2} (0.1 F{sub 0}) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of d F{sub SQ}=2x10{sup {minus}6} F{sub 0}/{radical}Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application we designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and we developed a two-SQUID readout system that will reduce SQUID noise in the experiment. We present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. We also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE Office of Defense Programs (DP) (US)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
762811
Report Number(s):
LA-UR-98-3894; TRN: US0100133
Resource Relation:
Conference: Applied Superconductivity Conference, Palm Desert, CA (US), 09/13/1998--09/18/1998; Other Information: PBD: 13 Sep 1998
Country of Publication:
United States
Language:
English