skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Running Title: C and N Allocation in Pine

Technical Report ·
DOI:https://doi.org/10.2172/762784· OSTI ID:762784

A long standing challenge has been understanding how plants and ecosystems respond to shifts in the balance of resource availabilities. The continuing rise in atmospheric CO{sub 2} will induce changes in the availability and use of several terrestrial ecosystem resources. We report on the acquisition and allocation of carbon and nitrogen in Pinus ponderosa Laws. seedlings grown at three levels of atmospheric carbon dioxide (370, 525, and 700 {micro}mol mol{sup -1}) and three levels of soil nitrogen supply in a controlled environment experiment. Nitrogen was applied (0, 100, and 200 {micro}g N g soil{sup -1}) at planting and again at week 26 of a 58-week, 4-harvest experiment. At the final harvest, plants grown with variety low available soil nitrogen showed no significant response to atmospheric CO{sub 2}. Plants at higher N levels responded positively to CO{sub 2} with the highest biomass at the middle CO{sub 2} level. Plants growing at the lowest N levels immediately allocated a relatively large portion of their nitrogen and biomass to roots. Plants growing at near present ambient CO{sub 2} levels allocated relatively little material to roots when N was abundant but moved both carbon and nitrogen below-ground when N was withheld. Plants growing at higher CO{sub 2} levels, allocated more C and N to roots even when N was abundant, and made only small shifts in allocation patterns when N was no longer supplied. In general, allocation of C and N to roots tended to increase when N supply was restricted and also with increasing atmospheric CO{sub 2} level. These allocation responses were consistent with patterns suggesting a functional balance in the acquisition of above-ground versus below-ground resources. In particular, variation in whole tree average nitrogen concentration can explain 68% of the variation ratio of root biomass to shoot biomass across the harvests. The capability to respond to temporal variation in nutrient conditions, the dynamics of nutrient uptake, and the dynamics of nutrient use were all seen to be influenced by the interplay between previous N supply, previous C supply, and the concentration of CO{sub 2} in the atmosphere. The data suggest that in an elevated CO{sub 2} atmosphere ponderosa pine seedlings will have higher root biomass and be likely to capture more N compared to seedlings today. Further, the combined growth and allocation responses of Ponderosa pine at elevated CO{sub 2} resulted in higher growth per unit N (nitrogen productivity) and lower N per gram of tissue (all tissues not just leaves) when nitrogen was not in abundant supply.

Research Organization:
ECOSYSTEM PROCESSES GROUP, BIOLOGICAL SCIENCES CENTER, DESERT RESEARCH INSTITUTE, P.O. BOX 60220, RENO, NV 89506 (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FG03-95ER62026
OSTI ID:
762784
Resource Relation:
Other Information: PBD: 1 Dec 1996
Country of Publication:
United States
Language:
English