skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generalized conjugate gradient method for the numerical solution of elliptic partial differential equations

Conference ·
OSTI ID:7366900

A generalized conjugate gradient method is considered for solving sparse, symmetric, positive-definite systems of linear equations, principally those arising from the discretization of boundary value problems for elliptic partial differential equations. The method is based on splitting off from the original coefficient matrix a symmetric, positive-definite one that corresponds to a more easily solvable system of equations, and then accelerating the associated iteration using conjugate gradients. Optimality and convergence properties are presented, and the relation to other methods is discussed. Several splittings for which the method seems particularly effective are also discussed; and for some, numerical examples are given. 1 figure, 2 tables. (auth)

Research Organization:
California Univ., Berkeley (USA). Lawrence Berkeley Lab.
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
7366900
Report Number(s):
LBL-4604; CONF-750987-2; STAN-CS-75-533
Resource Relation:
Conference: Symposium on sparse matrix computations, Argonne, IL, USA, 9 Sep 1975
Country of Publication:
United States
Language:
English