skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory and application of frequency-selective wavelets

Miscellaneous ·
OSTI ID:7296344

Orthonormal compactly supported wavelets have been successfully applied to generate sparse representations of piecewise-smooth functions, yielding fast numerical algorithms. The authors consider the case of case of piecewise oscillatory functions, and construct a variation of the original Daubechies family of wavelets which efficiently represents the oscillations. This new family is constructed by moving some of the zeros of the underlying symbol away from [pi], shifting the approximation properties of the wavelets. The zeros may be chosen to give a sparse representation of an oscillatory function whose spectrum is known. In this sense, these wavelets are frequency-selective. Existence, uniqueness, and regularity results are proved for this family of wavelets. A natural application is the numerical solution of the electric field integral equation in two spatial dimensions: The kernel is singular on the diagonal, and oscillatory within a narrow frequency spectrum away from the diagonal. Applying frequency selective wavelets with the discrete wavelet transform, the discrete equations are transformed into a sparse linear system which is economically solved by a multi-grid scheme based upon the discrete wavelet transform. Substantial computational savings are obtained over the same method using the original Daubechies family of wavelets, and a factor of 10 savings is obtained over standard LU-factorization.

Research Organization:
Washington Univ., Seattle, WA (United States)
OSTI ID:
7296344
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English