skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sensor fusion methodology for remote detection of buried land mines

Conference ·
OSTI ID:7167134

We are investigation a sensor fusion methodology for remote detection of buried land mines. Our primary approach is sensor intrafusion. Our dual-channel passive IR methodology decouples true (corrected) surface temperature variations of 0.2{degree}C from spatially dependent surface emissivity noise. It produces surface temperature maps showing patterns of conducted heat from buried objects which heat and cool differently from their surroundings. Our methodology exploits Planck's radiation law. It produces separate maps of surface emissivity variations which allow us to reduce false alarms. Our secondary approach is sensor interfusion using other methodologies. For example, an active IR CO{sub 2} laser reflectance channel helps distinguish surface targets unrelated to buried land mines at night when photographic methods are ineffective. Also, the interfusion of ground penetrating radar provides depth information for confirming the site of buried objects. Together with EG G in Las Vegas, we flew a mission at Nellis AFB using the Daedalus dual-channel (5 and 10 micron) IR scanner mounted on a helicopter platform at an elevation of 60 m above the desert sand. We detected surface temperature patterns associated with buried (inert) land mines covered by as much as 10 cm of dry sand. The respective spatial, spectral, thermal, emissivity and temporal signatures associated with buried targets differed from those associated with surface vegetation, rocks and manmade objects. Our results were consistent with predictions based on the annual Temperature Wave Model.They were confirmed by field measurements. The dual-channel sensor fusion methodology is expected to enhance the capabilities of the military and industrial community for standoff mine detection. Other important potential applications are open skies, drug traffic control and environmental restoration at waste burial sites. 11 figs.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
DOE/DP
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
7167134
Report Number(s):
UCRL-JC-103626; CONF-9004188-1; ON: DE90010633
Resource Relation:
Conference: 3. national symposium on sensor fusion, Orlando, FL (USA), 16-20 Apr 1990
Country of Publication:
United States
Language:
English