skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design tool needs for space nuclear propulsion systems

Conference · · Transactions of the American Nuclear Society; (United States)
OSTI ID:6983209
 [1];  [2]
  1. Oregon State Univ., Corvallis (United States)
  2. Atom Analysis, Inc., Portland, OR (United States)

The interest in a return trip for humans to the moon and a pioneering voyage to Mars has rekindled interest in the use of nuclear reactors to provide propulsion for both piloted and robotic space vehicles. Two types of nuclear reactor-based propulsion systems are currently envisioned: nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The former relies on the direct heating and exhaust of a propellant within the core of the reactor, while the latter utilizes ion thruster engines for propulsion, and the nuclear reactor supplies the large amount of electrical power required to drive the engines. Another direct contrast between the NTP and NEP concepts is the length of reactor operation. The NTP nuclear rocket core is required to produce large amounts of thermal power for relatively short bursts (on the order of minutes to hours), and the NEP reactor core operates for a much longer period of time (on the order of days to months) with a steady-state electrical power output. The design of these types of nuclear reactor systems requires the use of specific analysis tools, some of which already exist and others that need considerable development. The general areas in which design tools are needed in the development of systems for space nuclear propulsion include the following: (1) neutronics design - both steady-state and transient applications including thermal feedback effects; (2) thermal-hydraulics design - again, both steady-state and transient applications with coupling to and from the neutronics design codes; (3) materials analysis tools - due to the high temperatures and high stresses required for efficient propulsion operation, increased importance will be placed on understanding the material responses; and (4) systems analysis - these codes allow optimizaiton of the entire propulsion system.

OSTI ID:
6983209
Report Number(s):
CONF-921102-; CODEN: TANSAO
Journal Information:
Transactions of the American Nuclear Society; (United States), Vol. 66; Conference: Joint American Nuclear Society (ANS)/European Nuclear Society (ENS) international meeting on fifty years of controlled nuclear chain reaction: past, present, and future, Chicago, IL (United States), 15-20 Nov 1992; ISSN 0003-018X
Country of Publication:
United States
Language:
English