skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis

Abstract

Absorbed and processed mucosal neutral lipid has been shown to be composed of at least two pools of triacylglycerol. One is likely to subserve chylomicron formation, and the other appears to be transported from the intestine via a nonlymphatic route. In the present study, 50 +/- 5% of the mucosal lipid pellets was centrifuged at 75,000 g.min (low-speed pellet (LSP)). Discontinuous sucrose density gradient centrifugation of LSP showed that 61 +/- 7% of the lipid banded at the 0.25-0.86 M sucrose interface. Neutral lipid analysis showed that this subfraction was only 58% triacylglycerol, suggesting it was undergoing hydrolysis. Active lipolytic activity in vitro was found on incubation. The lipase had an alkaline pH optimum (pH 8.5) and persisted despite pancreatic ductular diversion. Lipolysis in vivo in a LSP fraction was shown by infusing (14C)glyceryltrioleate for 3.5 h followed by (3H)glyceryltrioleate for 30 min. Discontinuous sucrose density centrifugation of the LSP followed by an analysis of the lipids at the 0.25-0.86 M sucrose interface showed that 14C-neutral lipids were only 70 +/- 6% triacylglycerol, whereas 3H-neutral lipids were 88 +/- 2% triacylglycerol. 3H entered LSP slowly compared with the floating lipid in the same centrifuge tube. These studies suggest both inmore » vivo and in vitro mucosal lipolysis by a specific, alkaline-active lipase. The turnover rate of LSP is likely to be slow by comparison with neutral lipid floating to the top of the centrifuge tube.« less

Authors:
; ;  [1]
  1. (Univ. of Tennessee, Memphis (USA))
Publication Date:
OSTI Identifier:
6968774
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Physiology; (USA); Journal Volume: 257
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; LIPIDS; CHEMICAL COMPOSITION; CARBON 14 COMPOUNDS; CHOLESTEROL; ELECTRON MICROSCOPY; IN VITRO; IN VIVO; INTESTINES; ISOTOPE DILUTION; LIPASES; METABOLISM; MUCOUS MEMBRANES; RATS; TRIGLYCERIDES; TRITIUM COMPOUNDS; ULTRACENTRIFUGATION; ANIMALS; BODY; CARBOXYLESTERASES; CENTRIFUGATION; DIGESTIVE SYSTEM; ENZYMES; ESTERASES; ESTERS; GASTROINTESTINAL TRACT; HYDROGEN COMPOUNDS; HYDROLASES; HYDROXY COMPOUNDS; ISOTOPE APPLICATIONS; LABELLED COMPOUNDS; MAMMALS; MEMBRANES; MICROSCOPY; ORGANIC COMPOUNDS; ORGANS; RODENTS; SEPARATION PROCESSES; STEROIDS; STEROLS; TRACER TECHNIQUES; VERTEBRATES; 550201* - Biochemistry- Tracer Techniques; 550501 - Metabolism- Tracer Techniques

Citation Formats

Tipton AD IV, Frase, S., and Mansbach, C.M. II. Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis. United States: N. p., 1989. Web.
Tipton AD IV, Frase, S., & Mansbach, C.M. II. Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis. United States.
Tipton AD IV, Frase, S., and Mansbach, C.M. II. 1989. "Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis". United States. doi:.
@article{osti_6968774,
title = {Isolation and characterization of a mucosal triacylglycerol pool undergoing hydrolysis},
author = {Tipton AD IV and Frase, S. and Mansbach, C.M. II},
abstractNote = {Absorbed and processed mucosal neutral lipid has been shown to be composed of at least two pools of triacylglycerol. One is likely to subserve chylomicron formation, and the other appears to be transported from the intestine via a nonlymphatic route. In the present study, 50 +/- 5% of the mucosal lipid pellets was centrifuged at 75,000 g.min (low-speed pellet (LSP)). Discontinuous sucrose density gradient centrifugation of LSP showed that 61 +/- 7% of the lipid banded at the 0.25-0.86 M sucrose interface. Neutral lipid analysis showed that this subfraction was only 58% triacylglycerol, suggesting it was undergoing hydrolysis. Active lipolytic activity in vitro was found on incubation. The lipase had an alkaline pH optimum (pH 8.5) and persisted despite pancreatic ductular diversion. Lipolysis in vivo in a LSP fraction was shown by infusing (14C)glyceryltrioleate for 3.5 h followed by (3H)glyceryltrioleate for 30 min. Discontinuous sucrose density centrifugation of the LSP followed by an analysis of the lipids at the 0.25-0.86 M sucrose interface showed that 14C-neutral lipids were only 70 +/- 6% triacylglycerol, whereas 3H-neutral lipids were 88 +/- 2% triacylglycerol. 3H entered LSP slowly compared with the floating lipid in the same centrifuge tube. These studies suggest both in vivo and in vitro mucosal lipolysis by a specific, alkaline-active lipase. The turnover rate of LSP is likely to be slow by comparison with neutral lipid floating to the top of the centrifuge tube.},
doi = {},
journal = {American Journal of Physiology; (USA)},
number = ,
volume = 257,
place = {United States},
year = 1989,
month =
}
  • To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility formore » MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.« less
  • Purpose: One of the worst radiation-induced acute effects in treating head-and-neck (HN) cancer is grade 3 or higher acute (oral and pharyngeal) mucosal toxicity (AMT), caused by the killing/depletion of mucosa cells. Here we aim to testing a predictive model of the AMT in HN cancer patients receiving different radiotherapy schedules. Methods and Materials: Various radiotherapeutic schedules have been reviewed and classified as tolerable or intolerable based on AMT severity. A modified normal tissue complication probability (NTCP) model has been investigated to describe AMT data in radiotherapy regimens, both conventional and altered in dose and overall treatment time (OTT). Wemore » tested the hypothesis that such a model could also be applied to identify intolerable treatment and to predict AMT. This AMT NTCP model has been compared with other published predictive models to identify schedules that are either tolerable or intolerable. The area under the curve (AUC) was calculated for all models, assuming treatment tolerance as the gold standard. The correlation between AMT and the predicted toxicity rate was assessed by a Pearson correlation test. Results: The AMT NTCP model was able to distinguish between acceptable and intolerable schedules among the data available for the study (AUC = 0.84, 95% confidence interval = 0.75-0.92). In the equivalent dose at 2 Gy/fraction (EQD2) vs OTT space, the proposed model shows a trend similar to that of models proposed by other authors, but was superior in detecting some intolerable schedules. Moreover, it was able to predict the incidence of {>=}G3 AMT. Conclusion: The proposed model is able to predict {>=}G3 AMT after HN cancer radiotherapy, and could be useful for designing altered/hypofractionated schedules to reduce the incidence of AMT.« less
  • In this study, oleaginous microorganisms have considerable potential for biofuel and commodity chemical production. Under nitrogen-limitation, Rhodococcus jostii RHA1 grown on benzoate, an analog of lignin depolymerization products, accumulated triacylglycerols (TAGs) to 55% of its dry weight during transition to stationary phase, with the predominant fatty acids being C16:0 and C17:0. Transcriptomic analyses of RHA1 grown under conditions of N-limitation and N-excess revealed 1,826 dysregulated genes. Genes whose transcripts were more abundant under N-limitation included those involved in ammonium assimilation, benzoate catabolism, fatty acid biosynthesis and the methylmalonyl-CoA pathway. Of the 16 atf genes potentially encoding diacylglycerol O-acyltransferases, atf8 transcriptsmore » were the most abundant during N-limitation (~50-fold more abundant than during N-excess). Consistent with Atf8 being a physiological determinant of TAG accumulation, a Δ atf8 mutant accumulated 70% less TAG than wild-type RHA1 while atf8 overexpression increased TAG accumulation 20%. Genes encoding type-2 phosphatidic acid phosphatases were not significantly expressed. By contrast, three genes potentially encoding phosphatases of the haloacid dehalogenase superfamily and that cluster with, or are fused with other Kennedy pathway genes were dysregulated. Overall, these findings advance our understanding of TAG metabolism in mycolic acid-containing bacteria and provide a framework to engineer strains for increased TAG production.« less
  • We have measured the pyrimidine nucleotide contents of the culture fluid, acid-soluble fraction, and acid-insoluble fraction of cultures of hamster embryo fibroblasts (third subculture) through the final two divisions of growth in culture. The cells show a growth delay between the penultimate and ultimate division periods and a concomitant biochemical synchrony of pyrimidine metabolism. The cells exhibit normal excretion of pyrimidine nucleosides beginning with the ultimate division cycle. This excretion results from the net breakdown of ribonucleic acid and a cell-regulated maximum for pyrimidine mononucleoside polyphosphate content. This upper limit for the pyrimidine nucleoside polyphosphate content is not a steadymore » state phenomenon but rather an absence of both synthesis and utilization. The hamster embryo fibroblast exhibits a directed flow of salvage uridine for ribonucleic acid synthesis. We show that de novo synthetic uridine 5'-monophosphate also can be used for ribonucleic acid synthesis without prior entry into the cytoplasmic uridine nucleoside polyphosphate pool. During attachment and first division salvage uridine does enter the cytoplasmic nucleotide pool. The properties of the cytidine pools differ from the uridine pools in specific activity and levels of cytidine, due to turnover of the terminal C-C-A of cytoplasmic transfer ribonucleic acid and the delay in conversion of nonradioactive de novo synthetic uridine 5'-monophosphate to cytidine 5'-triphosphate. The partial synchrony in these cultures has been used as a temporal marker of the observed events.« less