skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interspecific variation in SO/sub 2/ flux: leaf surface versus internal flux, and components of leaf conductance. [Pisum sativum L. , Lycopersicon esculentum Mill. Flacca, Geranium carolinianum L. , Diplacus aurantiacus (Curtis) Jeps]

Journal Article · · Plant Physiol.; (United States)
OSTI ID:6940335

The objective of this study was to clarify the relationships among stomatal, residual, and epidermal conductances in determining the flux of SO/sub 2/ air pollution to leaves. Variations in leaf SO/sub 2/ and H/sub 2/O vapor fluxes were determined using four plant species: Pisum sativum L. (garden pea), Lycopersicon esculentum Mill. flacca (mutant of tomato), Geranium carolinianum L. (wild geranium), and Diplacus aurantiacus (Curtis) Jeps. (a native California shrub). Fluxes were measured using the mass-balance approach during exposure to 4.56 micromoles per cubic meter (0.11 microliters per liter) SO/sub 2/ for 2 hours in a controlled environmental chamber. Flux through adaxial and abaxial leaf surfaces with closed stomata ranged from 1.9 to 9.4 nanomoles per square meter per second for SO/sub 2/, and 0.3 to 1.3 millimoles per square meter per second for H/sub 2/O vapor. Flux of SO/sub 2/ into leaves through stomata ranged from approx.0 to 8.5 (dark) and 3.8 to 16.0 (light) millimoles per square meter per second. Flux of H/sub 2/O vapor from leaves through stomata ranged from approx.0 to 0.6 (dark) to 0.4 to 0.9 (light) millimole per square meter per second. Lycopersicon had internal flux rates for both SO/sub 2/ and H/sub 2/O vapor over twice as high as for the other species. Stomatal conductance based on H/sub 2/O vapor flux averaged from 0.07 to 0.13 mole per square meter per second among the four species. Internal conductance of SO/sub 2/ as calculated from SO/sub 2/ flux was from 0.04 mole per square meter per second lower to 0.06 mole per square meter per second higher than stomatal conductance. For Pisum, Geranium, and Diplacus stomatal conductance was the same or slightly higher than internal conductance, indicating that, in general, SO/sub 2/ flux could be predicted from stomatal conductance for H/sub 2/O vapor.

Research Organization:
Univ. of California, Riverside
OSTI ID:
6940335
Journal Information:
Plant Physiol.; (United States), Vol. 79:4
Country of Publication:
United States
Language:
English