Largescale flow in competinginteraction systems
Abstract
We study the dynamics of largescale flow in a system with several competing length scales. This system, when driven, is characterized by critically metastable states. When the driving force is lowered, these states melt'' via nucleation of a low density of slowly moving defects, which control and relate the longtime, longdistance behaviors. We demonstrate these properties with a onedimensional latticedynamics model for twinning in elastic materials, including (a) a periodic substrate potential, (b) a nonconvex nearestneighbor spring potential, and (c) a harmonic nextnearestneighbor spring potential. This system exhibits a rich spectrum of superlattice ground states. Largescale driving, obtained by adding a constant force and damping to the equations of motion, shows four distinct regimes: (i) At high forces a metastable inhomogeneously modulated configuration moves rigidly with a velocity given by the ratio of force to damping; (ii) as the force decreases the rigidity is lost via local nucleation of soliton defects (in the double well) and fluctuations of the velocities increase; (iii) for even lower forces the configuration ceases to translate, and the dynamics is controlled by nucleation of (sineGordonlike) kinkantikink pairs in the substrate; and finally (iv) at a sufficiently low force a metastable configuration, consisting of a randommore »
 Authors:

 Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA)
 Publication Date:
 OSTI Identifier:
 6900076
 Resource Type:
 Journal Article
 Journal Name:
 Physical Review, B: Condensed Matter; (USA)
 Additional Journal Information:
 Journal Volume: 41:10; Journal ID: ISSN 01631829
 Country of Publication:
 United States
 Language:
 English
 Subject:
 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CRYSTAL MODELS; METASTABLE STATES; CRYSTAL DEFECTS; CRYSTAL LATTICES; DYNAMICS; EXCITATION; FLOW MODELS; HAMILTONIANS; NUCLEATION; ONEDIMENSIONAL CALCULATIONS; PHASE TRANSFORMATIONS; TWINNING; CRYSTAL STRUCTURE; ENERGY LEVELS; ENERGYLEVEL TRANSITIONS; EXCITED STATES; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; MECHANICS; QUANTUM OPERATORS; 656002*  Condensed Matter Physics General Techniques in Condensed Matter (1987)
Citation Formats
Bishop, A R, Marianer, S, and Floria, L M. Largescale flow in competinginteraction systems. United States: N. p., 1990.
Web. doi:10.1103/PhysRevB.41.6703.
Bishop, A R, Marianer, S, & Floria, L M. Largescale flow in competinginteraction systems. United States. https://doi.org/10.1103/PhysRevB.41.6703
Bishop, A R, Marianer, S, and Floria, L M. Sun .
"Largescale flow in competinginteraction systems". United States. https://doi.org/10.1103/PhysRevB.41.6703.
@article{osti_6900076,
title = {Largescale flow in competinginteraction systems},
author = {Bishop, A R and Marianer, S and Floria, L M},
abstractNote = {We study the dynamics of largescale flow in a system with several competing length scales. This system, when driven, is characterized by critically metastable states. When the driving force is lowered, these states melt'' via nucleation of a low density of slowly moving defects, which control and relate the longtime, longdistance behaviors. We demonstrate these properties with a onedimensional latticedynamics model for twinning in elastic materials, including (a) a periodic substrate potential, (b) a nonconvex nearestneighbor spring potential, and (c) a harmonic nextnearestneighbor spring potential. This system exhibits a rich spectrum of superlattice ground states. Largescale driving, obtained by adding a constant force and damping to the equations of motion, shows four distinct regimes: (i) At high forces a metastable inhomogeneously modulated configuration moves rigidly with a velocity given by the ratio of force to damping; (ii) as the force decreases the rigidity is lost via local nucleation of soliton defects (in the double well) and fluctuations of the velocities increase; (iii) for even lower forces the configuration ceases to translate, and the dynamics is controlled by nucleation of (sineGordonlike) kinkantikink pairs in the substrate; and finally (iv) at a sufficiently low force a metastable configuration, consisting of a random array of solitons (in the doublewell potential), is pinned. We also observe strong hysteretic behavior at the transitions.},
doi = {10.1103/PhysRevB.41.6703},
url = {https://www.osti.gov/biblio/6900076},
journal = {Physical Review, B: Condensed Matter; (USA)},
issn = {01631829},
number = ,
volume = 41:10,
place = {United States},
year = {1990},
month = {4}
}