skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear Industry Support Services by the Buffalo Materials Research Center

Abstract

The Buffalo Materials Research Center (BMRC) is located on the campus of the State University of New York at Buffalo, Principal facilities within BMRC include a 2-MW PULSTAR, low-enrichment reactor, an electron accelerator, and irradiated materials remote testing facilities. The reactor and the materials testing facilities have been utilized extensively in support of the power reactor community since 1961. This paper briefly highlights the nature and scope of this service. The BMRC is operated for the university by Buffalo Materials Research, Inc., a private for-profit company, which is a subsidiary of Materials Engineering Associates, Inc. (MEA), a Maryland-based materials testing company. A primary mission of MEA has been research on the effects of neutron irradiation on reactor structural materials, including those used for pressure vessel and piping systems. The combined resources of MEA and BMRC have played a pivotal role in the assessment of reactor pressure vessel safety both in the United States and abroad and in the development of new radiation-resistant steels.

Authors:
 [1]
  1. (Buffalo Materials Research Center, Buffalo, NY (United States))
Publication Date:
OSTI Identifier:
6844304
Report Number(s):
CONF-931160--
Journal ID: ISSN 0003-018X; CODEN: TANSAO
Resource Type:
Conference
Resource Relation:
Journal Name: Transactions of the American Nuclear Society; (United States); Journal Volume: 69; Conference: American Nuclear Society (ANS) winter meeting, San Francisco, CA (United States), 14-18 Nov 1993
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 36 MATERIALS SCIENCE; PULSTAR-BUFFALO REACTOR; MATERIALS TESTING; IRRADIATION; PIPES; PRESSURE VESSELS; RADIATION EFFECTS; REACTOR OPERATION; REACTOR OPERATORS; STEELS; TESTING; TRAINING; ALLOYS; ANIMALS; CONTAINERS; EDUCATION; ENRICHED URANIUM REACTORS; IRON ALLOYS; IRON BASE ALLOYS; IRRADIATION REACTORS; ISOTOPE PRODUCTION REACTORS; MAMMALS; MAN; OPERATION; PERSONNEL; POOL TYPE REACTORS; PRIMATES; REACTORS; RESEARCH AND TEST REACTORS; RESEARCH REACTORS; VERTEBRATES; WATER COOLED REACTORS; WATER MODERATED REACTORS 220600* -- Nuclear Reactor Technology-- Research, Test & Experimental Reactors; 360106 -- Metals & Alloys-- Radiation Effects

Citation Formats

Henry, L.G. Nuclear Industry Support Services by the Buffalo Materials Research Center. United States: N. p., 1993. Web.
Henry, L.G. Nuclear Industry Support Services by the Buffalo Materials Research Center. United States.
Henry, L.G. 1993. "Nuclear Industry Support Services by the Buffalo Materials Research Center". United States. doi:.
@article{osti_6844304,
title = {Nuclear Industry Support Services by the Buffalo Materials Research Center},
author = {Henry, L.G.},
abstractNote = {The Buffalo Materials Research Center (BMRC) is located on the campus of the State University of New York at Buffalo, Principal facilities within BMRC include a 2-MW PULSTAR, low-enrichment reactor, an electron accelerator, and irradiated materials remote testing facilities. The reactor and the materials testing facilities have been utilized extensively in support of the power reactor community since 1961. This paper briefly highlights the nature and scope of this service. The BMRC is operated for the university by Buffalo Materials Research, Inc., a private for-profit company, which is a subsidiary of Materials Engineering Associates, Inc. (MEA), a Maryland-based materials testing company. A primary mission of MEA has been research on the effects of neutron irradiation on reactor structural materials, including those used for pressure vessel and piping systems. The combined resources of MEA and BMRC have played a pivotal role in the assessment of reactor pressure vessel safety both in the United States and abroad and in the development of new radiation-resistant steels.},
doi = {},
journal = {Transactions of the American Nuclear Society; (United States)},
number = ,
volume = 69,
place = {United States},
year = 1993,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The disposition of surplus nuclear materials has become one of the most pressing issues of our time. Numerous agencies have invoked programs with the purpose of removing such materials from various international venues and disposing these materials in a manner that achieves non-proliferability. This paper describes the Nuclear Fuel Services, Inc (NFS) Nuclear Material Disposition Program, which to date has focused on a variety of Special Nuclear Material (SNM), in particular uranium of various enrichments. The major components of this program are discussed, with emphasis on recycle and return of material to the nuclear fuel cycle. (authors)
  • Cornell University is licensed to operate two research reactor facilities on its main campus in Ithaca, New York: a 500-kW pulsing TRIGA and a 100-W zero-power reactor (ZPR). The initial criticality of both reactors took place in 1962, and the utilization of each has been, and continues to be, dedicated to the teaching and research programs of Cornell's many academic departments. As the nation's nuclear power industry grew, the demand for services at research and test reactors increased. As a result, and in large part because of special design features of the TRIGA, Cornell responded to a few requests formore » reactor testing services while maintaining the policy that these services would not interfere with teaching and research programs. The frequency of service requests suddenly mushroomed in November of 1989, when the nation's major testing reactor was shut down for repairs. In spite of a small staff of two full-time reactor operators, a decision was made to support the nuclear industry to the fullest extent possible without jeopardizing Cornell's teaching and research programs. This turned into a monumental task of tight scheduling and meeting precise deadlines. It could only be accomplished by working late evenings and weekends and, on a number of occasions, staying at the facility for up to 5 days continuously.« less
  • The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclearmore » material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.« less
  • The numeric and bibliographic nuclear data bases maintained by the National Nuclear Data Center and access to these data bases will be described. The U.S. Nuclear Data and Reaction Data Networks will also be briefly described.
  • The National Nuclear Data Center has provided remote access to its databases and other resources since 1986. This year we have completed the modernization of our databases and Web site. Resources available from our Web site will be summarized and some of the major improvements described in more detail.