skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shock waves in condensed media: Their properties and the equations of state of materials derived from them

Abstract

To provide an overall perspective and some understanding of what is involved in the shock-wave process, we first develop the basic conservation equations and some hydrodynamic flow properties that affect the experimental measurements. These are almost entirely restricted to one-dimensional plane flow, which is quite appropriate because almost all EOS data are obtained in a similar situation. The bulk of the thermodynamics needed for calculations to supplement the EOS data, or to calculate other thermodynamic quantities, such as the specific heat, when additional data are obtained, is presented next. Phase changes and elastic-plastic flow are then considered. A limited set of experimental techniques is given next, with one or two examples of typical records or results. These types of experiments are of primary importance in understanding the state of matter at high pressure. Because of a certain unique property of the shock-wave EOS of solids, a short section is devoted to the consequences of its properties followed by brief summaries of the results of many experiments. Finally, we consider the shock-wave EOS of the earth undoubtedly the largest shock-wave recovery laboratory we have, which after a lot of study by seismologists, has revealed quite a bit about itself. On themore » basis of that work and some results presented here, an EOS for the earth is derived. 86 refs., 90 figs.« less

Authors:
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
DOE/DP
OSTI Identifier:
6816914
Report Number(s):
LA-UR-90-1996; CONF-8907154-2
ON: DE90013178
DOE Contract Number:  
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Enrico Fermi summer course CX11: nuclear collisions from the mean field into the fragmentation regime, Varenna (Italy), 11-21 Jul 1989
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 58 GEOSCIENCES; EARTH MANTLE; EQUATIONS OF STATE; MATERIALS; HYDRODYNAMICS; INTERFEROMETRY; PHASE STUDIES; POROUS MATERIALS; PRESSURE EFFECTS; RANKINE-HUGONIOT EQUATIONS; SHOCK WAVES; SPECIFIC HEAT; TEMPERATURE MEASUREMENT; THERMODYNAMICS; EQUATIONS; FLUID MECHANICS; MECHANICS; PHYSICAL PROPERTIES; THERMODYNAMIC PROPERTIES; 360603* - Materials- Properties; 580000 - Geosciences

Citation Formats

McQueen, R G. Shock waves in condensed media: Their properties and the equations of state of materials derived from them. United States: N. p., 1989. Web.
McQueen, R G. Shock waves in condensed media: Their properties and the equations of state of materials derived from them. United States.
McQueen, R G. 1989. "Shock waves in condensed media: Their properties and the equations of state of materials derived from them". United States. https://www.osti.gov/servlets/purl/6816914.
@article{osti_6816914,
title = {Shock waves in condensed media: Their properties and the equations of state of materials derived from them},
author = {McQueen, R G},
abstractNote = {To provide an overall perspective and some understanding of what is involved in the shock-wave process, we first develop the basic conservation equations and some hydrodynamic flow properties that affect the experimental measurements. These are almost entirely restricted to one-dimensional plane flow, which is quite appropriate because almost all EOS data are obtained in a similar situation. The bulk of the thermodynamics needed for calculations to supplement the EOS data, or to calculate other thermodynamic quantities, such as the specific heat, when additional data are obtained, is presented next. Phase changes and elastic-plastic flow are then considered. A limited set of experimental techniques is given next, with one or two examples of typical records or results. These types of experiments are of primary importance in understanding the state of matter at high pressure. Because of a certain unique property of the shock-wave EOS of solids, a short section is devoted to the consequences of its properties followed by brief summaries of the results of many experiments. Finally, we consider the shock-wave EOS of the earth undoubtedly the largest shock-wave recovery laboratory we have, which after a lot of study by seismologists, has revealed quite a bit about itself. On the basis of that work and some results presented here, an EOS for the earth is derived. 86 refs., 90 figs.},
doi = {},
url = {https://www.osti.gov/biblio/6816914}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 1989},
month = {Sun Jan 01 00:00:00 EST 1989}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: