skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Schistosoma mansoni: cercarial responses to irradiance changes

Abstract

Cercariae of Schistosoma mansoni alternate between active swimming and passive drifting. They began swimming in response to either an increase or decrease in irradiance experienced during the passive phase. The number of cercariae reacting to a shadow was proportional to the magnitude of the stimulus. The shadow response may be mediated by the cercaria's ciliary receptors. About half as many cercariae reacted to an irradiance increase as to an equivalent decrease. This report is the first quantitative study of photosensory stimulus-response relationships in schistosome cercariae.

Authors:
Publication Date:
Research Org.:
Department of Biological Science, The Florida State University, Tallahassee
OSTI Identifier:
6816342
Alternate Identifier(s):
OSTI ID: 6816342
Resource Type:
Journal Article
Resource Relation:
Journal Name: J. Parasitol.; (United States); Journal Volume: 68:1
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; SCHISTOSOMA; PHOTOSENSITIVITY; BEHAVIOR; LIFE CYCLE; STIMULI; VISIBLE RADIATION; ELECTROMAGNETIC RADIATION; HELMINTHS; PLATYHELMINTHS; RADIATIONS; SENSITIVITY; TREMATODES 550700* -- Microbiology; 550100 -- Behavioral Biology

Citation Formats

Saladin, K.S.. Schistosoma mansoni: cercarial responses to irradiance changes. United States: N. p., 1982. Web. doi:10.2307/3281333.
Saladin, K.S.. Schistosoma mansoni: cercarial responses to irradiance changes. United States. doi:10.2307/3281333.
Saladin, K.S.. Mon . "Schistosoma mansoni: cercarial responses to irradiance changes". United States. doi:10.2307/3281333.
@article{osti_6816342,
title = {Schistosoma mansoni: cercarial responses to irradiance changes},
author = {Saladin, K.S.},
abstractNote = {Cercariae of Schistosoma mansoni alternate between active swimming and passive drifting. They began swimming in response to either an increase or decrease in irradiance experienced during the passive phase. The number of cercariae reacting to a shadow was proportional to the magnitude of the stimulus. The shadow response may be mediated by the cercaria's ciliary receptors. About half as many cercariae reacted to an irradiance increase as to an equivalent decrease. This report is the first quantitative study of photosensory stimulus-response relationships in schistosome cercariae.},
doi = {10.2307/3281333},
journal = {J. Parasitol.; (United States)},
number = ,
volume = 68:1,
place = {United States},
year = {Mon Feb 01 00:00:00 EST 1982},
month = {Mon Feb 01 00:00:00 EST 1982}
}
  • Developing larvae of Schistosoma mansoni migrate through various tissues en route to the liver and mesenteric veins of their definitive host. Regional (lymph node) and systemic (spleen) blastogenic responses to cercarial, adult and egg antigens were measured in CBA/J mice at various times after exposure to normal or irradiated S. mansoni cercariae. Among the separate lymph node groups studied were those draining the tail, thoracic region, intestines, head and neck, and the pelvis. Blastogenic responses were assayed by a micromethod requiring 10(5) cells in 20 microliter volumes per culture. Up to 5 weeks post-cercarial exposure the pattern of responses inmore » lymphoid tissues of infected mice coincided with the migratory route of the parasites. Following oviposition, cellular reactivity was pronounced in all lymph node groups. The reactivity of mice exposed to irradiated cercariae followed a pattern suggestive of a sustained antigenic stimulus only in the nodes draining the tail and lungs. Splenic (systemic) reactivity was roughly comparable between the two exposure groups. These data show the independence and vast differences in the host regional responses following normal or irradiated cercarial exposure.« less
  • Pulmonary cellular responses in C57BL/6 mice exposed to Schistosoma mansoni have been investigated by sampling cells from the respiratory airways with bronchoalveolar lavage. Mice exposed to cercariae attenuated with 20 krad gamma-radiation developed stronger and more persistent pulmonary leukocytic responses than animals exposed to equal numbers of normal parasites. Although vaccination with irradiated cercariae also stimulated T cell responses of greater magnitude and duration than normal infection, the lymphocytic infiltrate elicited by each regimen did not differ substantially in its composition, 5 wk after exposure. Studies with cercariae attenuated by different treatments established that a link exists between the recruitmentmore » of leukocytes to the lungs of vaccinated mice and resistance to reinfection. There was a strong association between pulmonary leukocytic responses and the elimination of challenge infections by vaccinated mice. Animals exposed to irradiated cercariae of S. mansoni were resistant to homologous challenge infection but were not protected against Schistosoma margrebowiei. Homologous challenge of vaccinated mice stimulated anamnestic leukocytic and T lymphocytic responses in the lungs, 2 wk postinfection, but exposure of immunized animals to the heterologous species failed to trigger an expansion in these populations of cells. Our studies indicate that pulmonary leukocytes and T lymphocytes are intimately involved in the mechanism of vaccine-induced resistance to S. mansoni. It remains unclear whether these populations of cells initiate protective inflammatory reactions against challenge parasites in the lungs, or accumulate in response to the activation of the protective mechanism by other means.« less
  • Mice vaccinated with radiation-attenuated cercariae display low levels of cellular and humoral immune responses toward schistosomulum antigens, as measured in vitro by lymphocyte blastogenesis and quantitation of anti-larval antibodies by indirect immunofluorescence. Both responses wane with time after vaccination. However subsequent challenge infection provokes immune responses of classical anamnestic character, being both more rapid in appearance and of greater magnitude. Antigen responsive cells appear in lymph nodes draining the challenge site within 24 hours after infection. Both circulating anti-schistosomulum surface antibodies as well as cytophilic IgE anti-worm antigen antibodies increase substantially by 1 week after challenge. All of the anamnesticmore » circulating antibodies belong to the IgG class. Those findings support the concept that vaccine-induced resistance to Schistosoma mansoni infection involves sensitized T and B lymphocytes, and point to the possible role of post-challenge anamnestic responses in the effector mechanism of parasite killing in this model.« less
  • The kinetics of cellular and humoral responses directed against schistosomula were examined in mice of three inbred strains which demonstrate differences in the degree of resistance induced by immunization with irradiated cercariae. T-Cell reactivity was observed during the first 4 weeks after vaccination but declined to control levels thereafter. Anti-schistosomulum antibody was first detected 2 weeks after vaccination, peaked by 6 weeks, and persisted as late as 15 weeks. In sera obtained at 6 weeks, antibody activity was detected in affinity chromatography-purified fractions containing IgM, IgA, IgG/sub 1/, IgG/sub 2//sub a/, and IgG/sub 3/ immunoglobulins. In general, the cellular andmore » humoral responses observed in C57Bl/6J mice, which consistently developed a high level of immunity after vaccination, were not significantly different from those observed in C3H/HeJ or CBA/J mice, which achieved only low to moderate levels of immunity. Thus, although antibody production appears to correlate more closely than T lymphocyte responsiveness with the typical long-term resistance pattern observed in this model, the absence of striking differences in parasite-specific antibody levels between mice of these different strains suggests that additional mechanisms may be involved in the development of immunity after vaccination.« less