skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design, performance, and cost characteristics of high temperature superconducting magnetic energy storage

Journal Article · · IEEE Transactions on Energy Conversion (Institute of Electrical and Electronics Engineers); (United States)
DOI:https://doi.org/10.1109/60.207403· OSTI ID:6798958
;  [1]; ; ; ; ;  [2]
  1. W.J. Schafer Associates, Inc., Pleasanton, CA (United States)
  2. General Atomics, San Diego, CA (United States)

A conceptual design for superconducting magnetic energy storage (SMES) using oxide superconductors with higher critical temperature than metallic superconductors has been analyzed for design features, refrigeration requirements, and estimated costs of major components. The study covered the energy storage range from 2 to 200 MWh at power levels from 4 to 400 MW. A SMES that uses high temperature superconductors (HTS) and operates at high magnetic field (e.g., 10 tesla), can be more compact than a comparable, conventional low-temperature device at lower field. The refrigeration power required for a higher temperature unit (20 to 77 Kelvin) will be less by 60 to 90 percent. The improvement in energy efficiency is significant for small units, but less important for large ones. The material cost for HTS units is dominated by the cost of superconductor, so that the total cost of an HTS system will be comparable to a low temperature system only if the superconductor price in $/Ampere-meter is made comparable by increasing current density or decreasing wire cost.

OSTI ID:
6798958
Journal Information:
IEEE Transactions on Energy Conversion (Institute of Electrical and Electronics Engineers); (United States), Vol. 8:1; ISSN 0885-8969
Country of Publication:
United States
Language:
English