### Video Transcript

π΄π΅πΆ is a right triangle at π΅,
where π΅πΆ is equal to three centimeters and π΄π΅ is equal to four centimeters. Find the length of line segment
π΄πΆ and the measures of angle π΄ and angle πΆ to the nearest degree.

We will begin by sketching the
right triangle π΄π΅πΆ. We are told that side π΅πΆ is three
centimeters long and side π΄π΅ is four centimeters long. The first part of our question is
to find the length of the line segment π΄πΆ. This is the hypotenuse of the
triangle, since it is opposite the right angle.

One way of calculating the length
of the hypotenuse when given the length of the other two sides of a right triangle
is using the Pythagorean theorem. This states that π squared plus π
squared is equal to π squared, where π is the length of the hypotenuse and π and
π are the lengths of the two shorter sides. Substituting in the values from
this question, we have π΄πΆ squared is equal to three squared plus four squared. Three squared is equal to nine, and
four squared, 16. We can then square root both sides
of our equation. And since π΄πΆ must be positive, we
have π΄πΆ is equal to the square root of nine plus 16. This simplifies to the square root
of 25, which is equal to five. The length of the line segment π΄πΆ
is five centimeters.

It is worth noting that this
triangle is an example of a Pythagorean triple. And as a result, we may simply have
recalled that any triangle with side lengths three centimeters, four centimeters,
and five centimeters will be a right triangle.

The next part of this question is
to find the measures of angles π΄ and πΆ. We will do this using our knowledge
of right angle trigonometry and the sine, cosine, and tangent ratios. One way of recalling these ratios
is using the acronym SOH CAH TOA, where sin π is equal to the opposite over the
hypotenuse, cos π is equal to the adjacent over the hypotenuse, and tan π is equal
to the opposite over the adjacent. We will now use one of these ratios
to help calculate the measure of angle π΄. The side of our triangle that is
opposite this angle is π΅πΆ, and the side that is adjacent to the angle is the side
π΄π΅. We have already labeled the longest
side π΄πΆ as the hypotenuse.

As we know all three lengths, we
can use any one of the three ratios. In this question, we will choose to
use the tangent ratio. The tangent of any angle is equal
to the opposite over the adjacent. So, in this question, tan π΄ is
equal to three over four, or three-quarters. To solve for π΄, we take the
inverse tangent of both sides such that π΄ is equal to the inverse tan of
three-quarters. Ensuring that our calculator is in
degree mode, we can type this in, giving us an answer of 36.8698 and so on. We are asked to give our answer to
the nearest degree, so this is equal to 37 degrees. The measure of angle π΄ is 37
degrees.

In order to calculate the measure
of angle πΆ, we could once again use one of our trigonometric ratios. However, it is important to note
that side length π΄π΅ is now the opposite, as it is opposite angle πΆ. In a similar way, side length π΅πΆ
is now the adjacent side. Once again, we could use any one of
the three ratios. Using the tangent ratio, we have
tan πΆ is equal to four over three. Taking the inverse tangent of both
sides, πΆ is equal to the inverse tan of four-thirds. And rounded to one decimal place,
this is equal to 53 degrees. The measure of angle πΆ is equal to
53 degrees. At this stage, it is worth checking
that our three angles sum to 180 degrees, as this is true of any three angles in a
triangle.

The three answers to this question
are the length of line segment π΄πΆ equals five centimeters, the measure of angle π΄
is 37 degrees, and the measure of angle πΆ is 53 degrees.