skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An update on the clinical trial of BNCT at the BMRR

Abstract

Boron neutron capture therapy (BNCT) was proposed more than six decades ago. It is a binary treatment modality that requires selective delivery of a {sup 10}B-labeled compound to a tumor and slow neutron irradiation of the tumor-bearing tissues. In order to improve the penetration of the neutron beam, an epithermal neutron beam was developed at the Brookhaven Medical Research Reactor (BMRR). This epithermal neutron beam can deliver relatively high thermal neutron fluence at depth without severe skin damage. Boronophenylalanine-fructose (BPA-F), a nontoxic boron carrier, was found to preferentially accumulate in tumor cells following intravenous infusion in patients with GBM. In preclinical BNCT studies in rats bearing 9L gliosarcoma, BPA-mediated BNCT was shown to be more efficacious than photon irradiation. In 1994, improvements in the neutron beam and in the understanding of the radiobiology of BPA-mediated BNCT led to the initiation of BNCT trials for human GBM at BMRR using BPA-F and epithermal neutrons. The primary objective of the phase I/II clinical trial of BPA-mediated BNCT at BMRR is to evaluate the safety of the BPA-F-mediated BNCT using epithermal neutrons in patients with GBM at a series of escalating BNCT doses. An incidental objective is to evaluate the therapeutic effectiveness ofmore » BNCT at each dose level. For each dose escalation group, the average brain dose (ABD) is escalated, as well as the minimum tumor dose. In summary, the BNCT procedure employed in the phase I/II clinical trial of BPA-F-mediated BNCT for GBM at BNL was found to be safe in all patients. The palliation afforded by a single session of BNCT compares favorably with palliation provided by fractionated photon therapy and adjuvant chemotherapy. If no evidence of radiation-induced brain toxicity is found in the current protocol, BNCT radiation dose will be further escalated.« less

Authors:
; ; ; ;  [1]
  1. Brookhaven National Lab., Upton, NY (United States)
Publication Date:
OSTI Identifier:
678112
Report Number(s):
CONF-990605-
Journal ID: TANSAO; ISSN 0003-018X; TRN: 99:009097
Resource Type:
Journal Article
Journal Name:
Transactions of the American Nuclear Society
Additional Journal Information:
Journal Volume: 80; Conference: 1999 annual meeting of the American Nuclear Society (ANS), Boston, MA (United States), 6-10 Jun 1999; Other Information: PBD: 1999
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; NEUTRON CAPTURE THERAPY; BORON 10; MRR REACTOR; RADIOPHARMACEUTICALS; NEOPLASMS; EPITHERMAL NEUTRONS; PERFORMANCE; SAFETY

Citation Formats

Ma, R., Capala, J., Chanana, A.D., Coderre, J.A., and Diaz, A.Z. An update on the clinical trial of BNCT at the BMRR. United States: N. p., 1999. Web.
Ma, R., Capala, J., Chanana, A.D., Coderre, J.A., & Diaz, A.Z. An update on the clinical trial of BNCT at the BMRR. United States.
Ma, R., Capala, J., Chanana, A.D., Coderre, J.A., and Diaz, A.Z. Wed . "An update on the clinical trial of BNCT at the BMRR". United States.
@article{osti_678112,
title = {An update on the clinical trial of BNCT at the BMRR},
author = {Ma, R. and Capala, J. and Chanana, A.D. and Coderre, J.A. and Diaz, A.Z.},
abstractNote = {Boron neutron capture therapy (BNCT) was proposed more than six decades ago. It is a binary treatment modality that requires selective delivery of a {sup 10}B-labeled compound to a tumor and slow neutron irradiation of the tumor-bearing tissues. In order to improve the penetration of the neutron beam, an epithermal neutron beam was developed at the Brookhaven Medical Research Reactor (BMRR). This epithermal neutron beam can deliver relatively high thermal neutron fluence at depth without severe skin damage. Boronophenylalanine-fructose (BPA-F), a nontoxic boron carrier, was found to preferentially accumulate in tumor cells following intravenous infusion in patients with GBM. In preclinical BNCT studies in rats bearing 9L gliosarcoma, BPA-mediated BNCT was shown to be more efficacious than photon irradiation. In 1994, improvements in the neutron beam and in the understanding of the radiobiology of BPA-mediated BNCT led to the initiation of BNCT trials for human GBM at BMRR using BPA-F and epithermal neutrons. The primary objective of the phase I/II clinical trial of BPA-mediated BNCT at BMRR is to evaluate the safety of the BPA-F-mediated BNCT using epithermal neutrons in patients with GBM at a series of escalating BNCT doses. An incidental objective is to evaluate the therapeutic effectiveness of BNCT at each dose level. For each dose escalation group, the average brain dose (ABD) is escalated, as well as the minimum tumor dose. In summary, the BNCT procedure employed in the phase I/II clinical trial of BPA-F-mediated BNCT for GBM at BNL was found to be safe in all patients. The palliation afforded by a single session of BNCT compares favorably with palliation provided by fractionated photon therapy and adjuvant chemotherapy. If no evidence of radiation-induced brain toxicity is found in the current protocol, BNCT radiation dose will be further escalated.},
doi = {},
journal = {Transactions of the American Nuclear Society},
number = ,
volume = 80,
place = {United States},
year = {1999},
month = {9}
}