skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation into the feasibility of a soft muon experiment

Abstract

Issues relevant in a soft ({lt} 5 GeV) muon pair experiment at the AGS or the RHIC central region are investigated. Observation of direct muon pairs is difficult because the muon pair to pion ratio is {omicron} (10{sup {minus}4}). Absorber penetration is the only means available to identify high energy muons among a large number of hadrons. Three important sources of background are sail-through hadrons that fail to interact in the absorber, the decays of pions and kaons to muons in the absorber, and leakage of hadronic shower products through the absorber. An absorber thick enough to limit the ratio of combinatorical background pairs to pions to {omicron} (10{sup {minus}4}) imposes a significant muon kinetic energy threshold due to muon range in the absorber. Absorbers with low atomic number Z are preferred to keep this threshold low, and to avoid loss of invariant mass resolution due to energy loss straggling and multiple coulomb scattering. Long-lived meson to muon decays can be directly suppressed only by picking an absorber with short interaction length, which implies a high density, high Z material. With sufficiently high statistics, a subtraction of the spectra of like-sign pairs from the spectrum of opposite-sign pairs should recovermore » the direct muon pair spectrum. 9 refs., 9 figs., 2 tabs.« less

Authors:
Publication Date:
Research Org.:
Oak Ridge National Lab., TN (USA)
Sponsoring Org.:
DOE/ER
OSTI Identifier:
6688483
Alternate Identifier(s):
OSTI ID: 6688483; Legacy ID: DE90015541
Report Number(s):
CONF-900331-13
ON: DE90015541; TRN: 90-025519
DOE Contract Number:
AC05-84OR21400
Resource Type:
Conference
Resource Relation:
Conference: Workshop on heavy ion physics at the alternating gradient synchrotron, Upton, NY (USA), 3-7 Mar 1990
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; KAONS; WEAK PARTICLE DECAY; MUON PAIRS; MUON DETECTION; PIONS; DISTRIBUTION FUNCTIONS; REST MASS; TRANSVERSE MOMENTUM; BOSONS; CHARGED PARTICLE DETECTION; DECAY; DETECTION; ELEMENTARY PARTICLES; FUNCTIONS; HADRONS; LINEAR MOMENTUM; MASS; MESONS; PARTICLE DECAY; PSEUDOSCALAR MESONS; RADIATION DETECTION; STRANGE MESONS; STRANGE PARTICLES 645102* -- High Energy Physics-- Particle Interactions & Properties-Experimental-- Weak Interactions & Properties

Citation Formats

Tincknell, M.L. Investigation into the feasibility of a soft muon experiment. United States: N. p., 1990. Web.
Tincknell, M.L. Investigation into the feasibility of a soft muon experiment. United States.
Tincknell, M.L. Fri . "Investigation into the feasibility of a soft muon experiment". United States. doi:. https://www.osti.gov/servlets/purl/6688483.
@article{osti_6688483,
title = {Investigation into the feasibility of a soft muon experiment},
author = {Tincknell, M.L.},
abstractNote = {Issues relevant in a soft ({lt} 5 GeV) muon pair experiment at the AGS or the RHIC central region are investigated. Observation of direct muon pairs is difficult because the muon pair to pion ratio is {omicron} (10{sup {minus}4}). Absorber penetration is the only means available to identify high energy muons among a large number of hadrons. Three important sources of background are sail-through hadrons that fail to interact in the absorber, the decays of pions and kaons to muons in the absorber, and leakage of hadronic shower products through the absorber. An absorber thick enough to limit the ratio of combinatorical background pairs to pions to {omicron} (10{sup {minus}4}) imposes a significant muon kinetic energy threshold due to muon range in the absorber. Absorbers with low atomic number Z are preferred to keep this threshold low, and to avoid loss of invariant mass resolution due to energy loss straggling and multiple coulomb scattering. Long-lived meson to muon decays can be directly suppressed only by picking an absorber with short interaction length, which implies a high density, high Z material. With sufficiently high statistics, a subtraction of the spectra of like-sign pairs from the spectrum of opposite-sign pairs should recover the direct muon pair spectrum. 9 refs., 9 figs., 2 tabs.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jun 01 00:00:00 EDT 1990},
month = {Fri Jun 01 00:00:00 EDT 1990}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and tomore » evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.« less
  • A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potentialmore » and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of how to shield the detector and reduce the background are addressed in the Detector Chapter. Polarization of the muons allows many very interesting measurements which are discussed in the Physics Chapter. Unlike the electron collider in which the electron beam is highly polarized and the positron beam unpolarized, both muon beams may be partially polarized. It is necessary to select forward moving muons from the pion's decay and thus reduce the available number of muons and hence the luminosity. The necessary machine technology needed to achieve such a collider is discussed in the Option Chapter; at the moment it is not part of our point design, although such capability would almost certainly be incorporated into an actual device.« less
  • The Fermilab E989 Muon g-2 experiment aims to measure
  • The design and simulated performance of a second feasibility study are presented. The efficiency of producing muons is {approx} 0.17 {micro}/p with 24 GeV protons. This study was sponsored by the BNL Director, with BNL site specific driver and layout. It was a follow on to the First Study[2] sponsored by the Fermilab Director, with Fermilab site specific driver and layout, and was the main US collaboration conceptual effort during the past year. Other studies, and technical work by the collaboration is reported in other papers.