skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonimaging concentrators for solar thermal energy. Final report

Technical Report ·
DOI:https://doi.org/10.2172/6658797· OSTI ID:6658797

A small experimental solar collector test facility has been established on the campus of the University of Chicago. This capability has been used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: (1) a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), (2) a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and (3) moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems have been designed, built and tested. The performance characteristics are presented. In addition a 73 m/sup 2/ experimental array of 3X non-evacuated CPC's has been installed in a school heating system on the Navajo Indian Reservation in New Mexico. The full array has a peak noon time efficiency of approx. 50% at ..delta..T = 50/sup 0/C above ambient and has supplied about half the school's heat load for the past two heating seasons. Several theoretical features of nonimaging concentration have been investigated including their long term energy collecting behavior. The measured performance of the different systems shows clearly that non-tracking concentrators can provide solar thermal energy from moderately high low temperature regimes (> 50/sup 0/C above ambient) up into the mid-temperature region (well above 200/sup 0/C above ambient). The measured efficiency at 220/sup 0/C for the 5.25X CPC was as high or higher than that for any of the commercial tracking systems tested.

Research Organization:
Chicago Univ., IL (USA). Enrico Fermi Inst.
DOE Contract Number:
AS02-76ET20236
OSTI ID:
6658797
Report Number(s):
DOE/ET/20236-18
Country of Publication:
United States
Language:
English