skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Miocene Coralline algae

Abstract

The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

Authors:
Publication Date:
OSTI Identifier:
6639103
Report Number(s):
CONF-880301-
Resource Type:
Conference
Resource Relation:
Conference: Annual meeting of the American Association of Petroleum Geologists, Houston, TX, USA, 20 Mar 1988
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; 03 NATURAL GAS; ALGAE; BIOGEOCHEMISTRY; MEDITERRANEAN SEA; PETROLEUM DEPOSITS; NATURAL GAS DEPOSITS; PALEONTOLOGY; CORALS; GEOLOGIC HISTORY; GEOLOGY; MALTA; OFFSHORE SITES; SEDIMENTATION; SEDIMENTS; SPAIN; TERTIARY PERIOD; CENOZOIC ERA; CHEMISTRY; CNIDARIA; DEVELOPING COUNTRIES; EUROPE; GEOCHEMISTRY; GEOLOGIC AGES; GEOLOGIC DEPOSITS; ISLANDS; MINERAL RESOURCES; PLANTS; RESOURCES; SEAS; SURFACE WATERS; WESTERN EUROPE 020200* -- Petroleum-- Reserves, Geology, & Exploration; 030200 -- Natural Gas-- Reserves, Geology, & Exploration

Citation Formats

Bosence, D.W.J.. Miocene Coralline algae. United States: N. p., 1988. Web.
Bosence, D.W.J.. Miocene Coralline algae. United States.
Bosence, D.W.J.. 1988. "Miocene Coralline algae". United States. doi:.
@article{osti_6639103,
title = {Miocene Coralline algae},
author = {Bosence, D.W.J.},
abstractNote = {The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1988,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Northern Nicaragua Rise (NNR) is comprised today of the eastern Honduras/Nicaragua and southern Jamaica carbonate shelves, and a series of relatively small detached carbonate banks (i.e., Pedro, Rosalind, Serranilla, Diriangen, and Bawika Banks) separated from each other by intervening basins and seaways. The NNR basins and seaways, because of their common north trending orientation, have been previously interpreted as Paleocene, Eocene, and possibly Oligocene rifts, becoming progressively younger from the eastern to the western part of NNR. Results from three recent (1988 and 1992) high resolution seismic surveys within these major seaways and basins, (1) Walton Basin, (2) Pedromore » Channel, and (3) seaways and Serranilla Basin on the western side of the NNR, show that the present bank and basin configuration evolved from a once continuous megabank that covered the entire length of the NNR, including the Island of Jamaica from Eocene through early Miocene times. In the late middle ( ) Miocene, this megabank progressively broke up into a series of smaller banks, basins and seaways, mainly as the result of tectonic movements related to the overall strike-slip displacement within the North American and Caribbean Plate Boundary Zone of the Cayman Trough. At the same time (late middle Miocene), the most eastern portion of the megabank was uplifted and today forms most of central and south Jamaica. The timing of the megabank segmentation has tentatively been constrained by dating several blocks of shallow water limestone dredged from parts of the megabank outcropping on the sea floor of different seaways.« less
  • Benthic delta/sup 18/O analyses from DSDP sites worldwide have documented a positive excursion (similarly ordered + 1.5%) through the early-middle Miocene. These data are traditionally interpreted as marking the transition from an ice-free world to one that was extensively glaciated. Recently, however, this doctrine has been challenged, and an alternative hypothesis suggests the benthic delta/sup 18/O excursion primarily reflects a temperature drop within a previously glaciated world. Within the North Carolina continental margin, a chronostratigraphic framework consisting of 6 discrete early Miocene depositional sequences was established via stratigraphic interpretations from over 21,000 Km of high-resolution seismic reflection profiles. Each sequencemore » is bound by unconformities which were mapped throughout the continental margin. Biostratigraphic analyses of 140 vibracores penetrating these sequences demonstrate that each sequence is a consequence of 4th-order (10/sup 5/yrs) sea-level cyclicity, similar in duration (100-300 Ka) and amplitude (100-150 m) to the glacioeustatic sea-level fluctuations of the Quaternary Epoch. Recognition of late Burdigalian high-frequency (4th-order) sea-level cyclicity demonstrates that continental ice-sheets were large enough during the early Miocene to drive eustatic sea-level fluctuations with Milankovitch-type periodicities. This further supports Matthews (1984) hypothesis that continental ice-caps existed on Antarctica PRIOR to the well-documented middle Miocene benthic delta/sup 18/O global enrichment event.« less
  • The Tejor area, located in the southeastern end of the San Joaquin Valley of California, provides an excellent opportunity to study earliest Miocene tectonics and their subsequent control on Miocene deposystems in the east slope setting. Abundant outcrop and subsurface control, correlative time markers (including volcanic units and micropaleontologic reports), and a relatively mild overprinting by recent structuring facilitated this 3-year study. Late Zemorrian through early Saucesian (22 Ma) volcanic flows and eruptives covered the area while coincident tensional faulting caused the Zemorrian-age Vedder shelf-slope system to collapse. A horst-and-graben basin system resulted, with a narrow serrated shelf along themore » eastern margin. Onset of Saucesian deposition was dominated by conglomeratic turbidites spilling into silled basin depocenters. The clastic load included typical Sierran-derived material and volcanic detritus from the prior flows. Rugged sea floor relief controlled channel courses and sediment thickness. Turbidite deposition continued through the earliest Mohnian. The early Saucesian sea flow topography exerted progressively less effect on channel courses, while influence from previous channel buildups increased. Clastic sorting improved with time as the shelf matured and the slope gradient decreased, and clean reservoir channel sands were deposited in meanderlike patterns. This sequence of events is critical to working the structural and stratigraphic hydrocarbon potential of the Tejon area. Zemorrian Vedder and Eocene-age production is associated with paleohorst blocks (e.g., Tejon North oil field and Tunis Creek pool of the Tejon Hills oil field).« less
  • The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuelsmore » production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in the same photobioreactor system should be similar at light limited growth conditions based on photon flux. It is how the algae 'allocate' this energy captured that will vary: Data will be presented that shows that Botryococcus invests greater energy in oil production than Chlorella under these growth conditions. In essence, the Chlorella can grow 'fast and lean' or can be slowed to grow 'slow and fat'. The overall energy potential between the Chlorella and Botryococcus, then, becomes much more equivalent on a per-photon basis. This work will indicate an interesting relationship between two very different algae species, in terms of growth rate, lipid content and composition, and energy efficiency of the overall process. The presentation will indicate that in light-limited growth, it cannot be assumed that either rapid growth rate or lipid production rate can be used as stand-alone indicators of which species-lipid relationships will truly be more effective in algae-to-fuels scenarios.« less