skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

Abstract

The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

Authors:
Publication Date:
Research Org.:
Pennsylvania Univ., Philadelphia, PA (USA)
OSTI Identifier:
6531761
Resource Type:
Miscellaneous
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; AMP; BIOLOGICAL ACCUMULATION; PARASYMPATHOMIMETICS; RECEPTORS; PHOSPHOLIPIDS; METABOLISM; ONTOGENESIS; ACETYLCHOLINE; BIOCHEMICAL REACTION KINETICS; CEREBRAL CORTEX; HIPPOCAMPUS; PARASYMPATHOLYTICS; RATS; TRACER TECHNIQUES; TRITIUM COMPOUNDS; AMINES; AMMONIUM COMPOUNDS; ANIMALS; AUTONOMIC NERVOUS SYSTEM AGENTS; BODY; BRAIN; CENTRAL NERVOUS SYSTEM; CEREBRUM; DRUGS; ESTERS; HYDROGEN COMPOUNDS; ISOTOPE APPLICATIONS; KINETICS; LIPIDS; MAMMALS; MEMBRANE PROTEINS; NERVOUS SYSTEM; NEUROREGULATORS; NUCLEOTIDES; ORGANIC COMPOUNDS; ORGANIC PHOSPHORUS COMPOUNDS; ORGANS; PROTEINS; QUATERNARY COMPOUNDS; REACTION KINETICS; RODENTS; VERTEBRATES; 550201* - Biochemistry- Tracer Techniques

Citation Formats

Lee, W. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated. United States: N. p., 1989. Web.
Lee, W. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated. United States.
Lee, W. Sun . "Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated". United States. doi:.
@article{osti_6531761,
title = {Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated},
author = {Lee, W.},
abstractNote = {The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 1989},
month = {Sun Jan 01 00:00:00 EST 1989}
}

Miscellaneous:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item.

Save / Share:
  • In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinicmore » receptive proteins were alkylated with {sup 3}H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m{sub 3} reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m{sub 2} and/or m{sub 4} receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI.« less
  • Muscarinic cholinergic receptors have been classified pharmacologically into two distinct populations designated muscarinic type-one (M-1) and mscarinic type-two (M-2). The semiquantitative technique of receptor autoradiography was used to examine the anatomical and cellular distribution, and densities of M-1 and M-2 receptors in the rate brain. Muscarinic receptors were labeled with the classical antagonist ({sup 3}H)quinuclidinyl benzilate (QNB). Differentiation of the muscarinic subtypes was accomplished by competition studies of ({sup 3}H)QNB against the relatively selective M-1 antagonist pirenzepine (PZ), and the relatively selective M-2 antagonist, AFDX-116. In addition, M-1 and M-2 receptors were directly labeled with ({sup 3}H)PZ and ({sup 3}H)AFDX-116,more » respectively. Cholinergic pathways from the large cholinergic neurons in the nucleus basalis magnocellularis (NBM) to the cortex and from the medial septum (MS) to the hippocampus were examined by lesioning with the selective cholinergic neurotoxin, AF64A. Bilateral cerebral cortical infarction was performed in order to analyze potential changes in muscarinic receptor populations in subcortical structures that are sensitive to cortical infarction. Finally, the response of muscarinic receptors to fetal septodiagonal band transplants in the deafferentated hippocampus was examined.« less
  • The binding of muscarinic agonists, partial agonists and antagonists to muscarinic receptors of 1321N1 human astrocytoma cells was studied. Binding was studied in both intact cells and cell lysates. Partial agonists and antagonists exhibited similar apparent affinities in intact cell competition binding assays with either the lipophilic radioligand ({sup 3}H)QNB or the hydrophilic radioligand ({sup 3}H)NMS. In contrast, full agonists exhibited markedly lower apparent affinities in intact cells with ({sup 3}H)QNB than with ({sup 3}H)NMS. Treatment of cells with antimycin A to deplete intracellular ATP prevented agonist-induced internalization of muscarinic receptors as assessed by sucrose density gradient assays of receptormore » subcellular distribution. In ATP-depleted cells, the apparent affinities of full agonists vs ({sup 3}H)QNB were markedly higher. The apparent affinities of partial agonists and of antagonists were unaffected by ATP depletion. In other studies, the effects of the protein kinase C activator phorbol 12-myristate, 13-acetate (PMA) on muscarinic receptor downregulation and internalization in 1321N1 cells were determined. PMA alone did not induce muscarinic receptor downregulation but instead decreased both the rate and final extent of downregulation induced by the agonist carbachol. The specificity of other protein kinase C activators for inhibiting carbachol-induced downregulation indicated involvement of protein kinase C. Furthermore, the protein kinase C inhibitor staurosporine prevented the inhibitory effect of PMA on downregulation. However, staurosporine did not inhibit agonist-induced downregulation.« less
  • The coupling between the M1 and M2 muscarinic receptor subtypes and phosphatidylinositol (Pl) hydrolysis has been examined in the corpus striatum and cerebral cortex of the rat brain. Receptor binding by the various muscarinic ligands was assessed using a preparation of intact brain cell aggregates, under similar conditions as the assay of Pl hydrolysis. In striatal cell aggregates, (/sup 3/H)-quinuclidinyl benzilate ((/sup 3/H)-QNB) bound to a single class of muscarinic sites with high affinity, inhibition of (/sup 3/H)-QNB binding by muscarinic receptor ligands which exhibit selectivity for subtypes of the muscarinic receptor revealed the presence of both the M1 andmore » M2 subtypes in approximately equal numbers.« less
  • PKC, a phorbol ester receptor, copurified with specific binding sites of ({sup 3}H)phorbol-12,13,-dibutyrate (({sup 3}H)PDBu). The specific binding of ({sup 3}H)PDBu to intact cells was saturable to a single class of binding sites. The PKC and phorbol ester receptors in N1E-115 cells can be down regulated by prolonged phorbol ester incubation. Phorbol 12-myristate 13-acetate (PMA) suppressed muscarinic receptor-mediated cyclic GMP response in a time-dependent and a concentration-dependent fashion and the suppressive effect of PMA could be attenuated by a protein kinase inhibitor, H-7, as well as by down-regulation of the PKC through long-term incubation with PDBu. Exposure of the cellsmore » to the muscarinic agonist carbamylcholine also desensitized subsequent CBC-mediated cyclic GMP response. However, pretreatment with carbamylcholine did not desensitize histamine-induced cyclic GMP formation while treatment with PMA suppressed this histamine-mediated response. Preincubation of the cells with CBC, but not with phorbol ester, resulted in down-regulation of muscarinic receptors. The loss of muscarinic receptors induced by agonist even occurred when the phosphoinositide hydrolysis response was suppressed.« less