skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of vacancy mechanism for grain boundary self-diffusion by computer simulation

Technical Report ·
DOI:https://doi.org/10.2172/6470058· OSTI ID:6470058

It is currently well established that the fast self-diffusion which occurs along grain boundaries (GBs) in metals must occur by a point defect exchange mechanism. For example, it is known that rapid GB diffusion can transport a net current of atoms along GBs during both sintering and diffusional creep, and that the two species in a binary substitutional alloy diffuse at different rates in GBs. However, it has not been possible to establish firmly whether the defect mechanism involves the exchange of atoms with vacancy or interstitial point defects. It has been suspected that the vacancy exchange mechanism must apply but it has been difficult to prove this hypothesis because of a lack of detailed information at the atomistic level. The results are presented of an effort to establish the GB self-diffusion mechanism in a bcc iron ..sigma.. = 5 (36.9/sup 0/) (001) (310) tilt boundary using the combined methods of computer molecular statics and molecular dynamics simulation.

Research Organization:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AS02-78ER05002
OSTI ID:
6470058
Report Number(s):
DOE/ER/05002-T3; COO-5002-23; ON: DE81025539
Country of Publication:
United States
Language:
English

Similar Records

Determination of vacancy mechanism for grain boundary self-diffusion by computer simulation
Journal Article · Sat Aug 01 00:00:00 EDT 1981 · Scr. Metall.; (United States) · OSTI ID:6470058

Investigation of the Effects of Hydrogen Atoms Concentration on the Tungsten Sigma 5 (310) Symmetric Tilt Grain Boundary Strength
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Transactions of the American Nuclear Society · OSTI ID:6470058

Grain boundary diffusion mechanisms in metals
Journal Article · Wed Dec 01 00:00:00 EST 1982 · Metall. Trans., A; (United States) · OSTI ID:6470058