skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Geology of Volcan Las Navajas, a pleistocene trachyte/peralkaline rhyolite volcanic center in Nayarit, Mexico

Abstract

Volcan Las Navajas, located in the northwestern portion of the Mexican Volcanic Belt has produced a sequence of volcanic rocks with compositions in marked contrast to the predominantly calc-alkaline volcanoes which predominate in this part of Mexico. The oldest exposed lavas consist of trachytes with 63% SiO/sub 2/, 6% FeO*, and 500 ppm Zr along with comenditic rhyolites with 68% SiO/sub 2/, 5% FeO*, 800 ppm Zr, and an agpaitic index of 1.0. These lavas were followed by the eruption of a comenditic ash-flow tuff and the formation of a caldera 2.7 km in diameter. This caldera was subsequently filled by eruptions of pantelleritic rhyolite obsidian lava flows with 72% SiO/sub 2/, 8% FeO*, 1100 ppm Zr, and an agpaitic index of 1.5 to 1.9. A second caldera was then formed which is offset to the south of the main eruptive vents for previous eruptions. This younger caldera has a diameter of about 4.8 km and its southern walls have been covered by calc-alkaline andesitic lavas erupted from nearby Sanganguey volcano. Volcanoclastic sediments in the floor of the younger caldera have been tilted and faulted in a manner suggestive of late stage resurgence. Subsequent eruptions within the caldera, however, havemore » been restricted to calc-alkaline andesites. Tectonically, the area in which this volcano occurs appears to have been undergoing a crustal rifting event since the Pliocene. The occurrence of these peralkaline rocks lends further support to such a hypothesis.« less

Authors:
;
Publication Date:
Research Org.:
Tulane Univ., New Orleans, LA (USA)
OSTI Identifier:
6458495
Alternate Identifier(s):
OSTI ID: 6458495
Report Number(s):
CONF-8510489-
Journal ID: CODEN: GAAPB
Resource Type:
Conference
Resource Relation:
Journal Name: Geol. Soc. Am., Abstr. Programs; (United States); Journal Volume: 17; Conference: 98. annual meeting of the Geological Society of America, Orlando, FL, USA, 28 Oct 1985
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; MEXICO; VOLCANIC REGIONS; RHYOLITES; CHEMICAL COMPOSITION; TRACHYTES; GEOLOGIC HISTORY; CALDERAS; GEOCHEMISTRY; GEOLOGY; LAVA; PLEISTOCENE EPOCH; VOLCANISM; CENOZOIC ERA; CHEMISTRY; DEVELOPING COUNTRIES; GEOLOGIC AGES; IGNEOUS ROCKS; LATIN AMERICA; NORTH AMERICA; QUATERNARY PERIOD; ROCKS; VOLCANIC ROCKS 580100* -- Geology & Hydrology-- (-1989); 580400 -- Geochemistry-- (-1989)

Citation Formats

Hegre, J.A., and Nelson, S.A. Geology of Volcan Las Navajas, a pleistocene trachyte/peralkaline rhyolite volcanic center in Nayarit, Mexico. United States: N. p., 1985. Web.
Hegre, J.A., & Nelson, S.A. Geology of Volcan Las Navajas, a pleistocene trachyte/peralkaline rhyolite volcanic center in Nayarit, Mexico. United States.
Hegre, J.A., and Nelson, S.A. Tue . "Geology of Volcan Las Navajas, a pleistocene trachyte/peralkaline rhyolite volcanic center in Nayarit, Mexico". United States. doi:.
@article{osti_6458495,
title = {Geology of Volcan Las Navajas, a pleistocene trachyte/peralkaline rhyolite volcanic center in Nayarit, Mexico},
author = {Hegre, J.A. and Nelson, S.A.},
abstractNote = {Volcan Las Navajas, located in the northwestern portion of the Mexican Volcanic Belt has produced a sequence of volcanic rocks with compositions in marked contrast to the predominantly calc-alkaline volcanoes which predominate in this part of Mexico. The oldest exposed lavas consist of trachytes with 63% SiO/sub 2/, 6% FeO*, and 500 ppm Zr along with comenditic rhyolites with 68% SiO/sub 2/, 5% FeO*, 800 ppm Zr, and an agpaitic index of 1.0. These lavas were followed by the eruption of a comenditic ash-flow tuff and the formation of a caldera 2.7 km in diameter. This caldera was subsequently filled by eruptions of pantelleritic rhyolite obsidian lava flows with 72% SiO/sub 2/, 8% FeO*, 1100 ppm Zr, and an agpaitic index of 1.5 to 1.9. A second caldera was then formed which is offset to the south of the main eruptive vents for previous eruptions. This younger caldera has a diameter of about 4.8 km and its southern walls have been covered by calc-alkaline andesitic lavas erupted from nearby Sanganguey volcano. Volcanoclastic sediments in the floor of the younger caldera have been tilted and faulted in a manner suggestive of late stage resurgence. Subsequent eruptions within the caldera, however, have been restricted to calc-alkaline andesites. Tectonically, the area in which this volcano occurs appears to have been undergoing a crustal rifting event since the Pliocene. The occurrence of these peralkaline rocks lends further support to such a hypothesis.},
doi = {},
journal = {Geol. Soc. Am., Abstr. Programs; (United States)},
number = ,
volume = 17,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 1985},
month = {Tue Jan 01 00:00:00 EST 1985}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Two distinctive ash-flow tuffs occur around the base of Volcan Las Navajas, a Pleistocene trachyte - peralkaline rhyolite center located in the northwestern segment of the Mexican Volcanic belt. The lower ash-flow unit is locally up to 65 m thick, is lithic rich and contains pumice blocks of comenditic rhyolite. The unit is not extensively exposed, and thus its areal extent and volume cannot be determined. Its chemical characteristics and stratigraphic relationship to other products erupted from Las Navajas suggest that it is related to the formation of the older of the two calderas which occur on Las Navajas. Unconformablymore » overlying this unwelded ash-flow is a pantelleritic airfall pumice unit which is locally welded. This airfall unit is conformably overlain by a welded as-flow tuff that contains fiamme of pantelleritic composition (72 %SiO/sub 2/, 8% FeO*, 900 ppm Zr, agpaitic index of 1.7) as well as pumice blocks that show evidence of various degrees of mixing between pantellerite and trachyte. This suggests eruption from a chemically zoned magma chamber. This unit is locally up to 20 m thick, although its top has been removed by erosion. It is found on all sides of Las Navajas except on the south where it may be covered by Volcan Sanganguey, a Pleistocene to Recent calc-alkaline volcano. The welded ash-flow has been dated by K - Ar at 0.2+/-0.1 m.y. Stratigraphically and chemically this ash-flow appears to be related to the formation of younger of the two calderas.« less
  • Volcan Tepetiltic is located in the northwestern segment of the Mexican Volcanic Belt, about 40 km SW of the city of Tepic. The structure is a calc-alkaline stratovolcano composed primarily of andesite and dacite lava flows topped by an elliptical caldera measuring approximately 5 by 2.5 km. At least two cycles of andesite volcanism followed by rapid differentiation into volumetrically subordinate dacite flows and dikes built the majority of the complex. The second pulse of andesitic lavas were more basic than the first and appear to have been the result of reinjection of mafic magma into the shallow andesitic magmamore » chamber. This was closely followed by the emplacement of two rhyolite domes and associated ash deposits on the eastern flank of the volcano. Finally, two small hornblende andesite domes were erupted on the floor of the caldera, and a lake formed in the northeastern corner of the caldera. Cinder cones on the flanks of the volcano have erupted alkaline lavas of mugearitic affinity. These are chemically unrelated to the calc-alkaline lavas erupted from Tepetiltic itself. The latest activity of Tepetiltic was the emplacement of a crystal rich rhyolite domes on the southern flank, which has blocked stream drainages to form a coulee lake. This last event has occurred within the last several thousand years. The rocks erupted from Tepetiltic form a chemically continuous suite which could have been derived through crystal fractionation of andesitic magma. No basic parental magmas, however, have erupted throughout the area.« less
  • Dissolution and alteration of minerals and glass in fresh rock, and the extensive occurrence of amorphous residues and precipitates in the weathered rock, control the spring water composition of two volcanoes located in the northwestern segment of the Mexican Volcanic Belt. SEM photomicrographs reveal dissolution and alteration features on phenocrysts that include crystallographically oriented etch pits, and high Al and Fe residues. Vessicles in glass appear to be coalescing to form large voids. Amorphous products are Al-Fe-Si oxides and hydroxides and include allophane and other pseudo-crystalline products. No clay minerals occur in concentrations above the detection limit of an XRD.more » Silica, sodium and potassium are released into solution at the fresh rock/weathered rock interface. Silica appears to reach a maximum of 100 ppm due to buffering by amorphous silica precipitates. Sinks for potassium may occur deep in the weathering profile on some rock types as Na/K released upon weathering is significantly lower than that found in solution. The anomolously high concentrations of magnesium and calcium in the groundwater and weathered rock, is an indication that they are being released along the flow path and may be adsorbed onto clay-size material where the water emerges through the soil zone.« less
  • Los Humeros volcanic center located 180 km east of Mexico City, is the surface manifestation of a magma chamber zoned from rhyolitic uppermost levels to andesitic and perhaps basaltic lower levels. Compositional zonation of major and most trace elements seems to have been controlled largely by crystal-liquid equilibria. Partial melting of young crustal lithologies accounts best for volume relations, but must be complemented by fractional crystallization coupled with assimilation to explain compositional and isotopic variations. Systematic trends in Cr, Ni, Rb, and Ba, however, further suggest episodic magma mixing.
  • Alid volcanic center is a 700-meter-tall mountain in Eritrea, northeast Africa. This mountain straddles the axis of an active crustal-spreading center called the Danakil Depression. Though volcanism associated with this crustal spreading is predominantly basaltic, centers of silicic volcanism, including Alid, are present locally. Silicic centers imply a magma reservoir in the crust and thus a possible potent shallow heat source for a hydrothermal-convection system. Boiling-temperature fumaroles are common on Alid, and their gas compositions indicate a reservoir temperature of at least 250{degrees}C. Alid is a 7-km x 5-km structural dome. The domed rocks, in decreasing age, are Precambrian schistmore » and granite, a sequence of intercalated sedimentary rocks and basaltic lavas, and a sequence of basaltic and rhyolitic lava flows. Though isotopic ages are not yet determined, the domed volcanic rocks of Alid appear to be late Tertiary and/or Quaternary. Doming was likely caused by intrusion of relatively low density silicic magma into the upper crust. Subsequent to dome formation, a substantial volume of this magma was erupted from a vent near the west end of the summit area of the dome. This eruption produced a blanket of plinian rhyolite pumice over most, if not all, of the dome and fed pyroclastic flows that covered the part of the Danakil Depression around the base of the dome. The pumice deposits contain abundant inclusions of granophyric, miarolitic pyroxene granite, chemically indistinguishable from the pumice. This granite likely represents the uppermost part of the magma reservoir, which crystallized just prior to the pumice eruption.« less