skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of osmolarity on potassium transport in isolated cerebral microvessels

Abstract

Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of /sup 86/Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed.

Authors:
Publication Date:
Research Org.:
National Cheng Kung Univ., Tainan (Taiwan)
OSTI Identifier:
6409430
Resource Type:
Journal Article
Resource Relation:
Journal Name: Life Sci.; (United States); Journal Volume: 43:4
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; POTASSIUM; MEMBRANE TRANSPORT; BRAIN; CHLORIDES; ENDOTHELIUM; OSMOSIS; OUABAIN; RATS; RUBIDIUM 86; SODIUM COMPOUNDS; TRACER TECHNIQUES; ULTRACENTRIFUGATION; ALKALI METAL COMPOUNDS; ALKALI METAL ISOTOPES; ALKALI METALS; ANIMAL TISSUES; ANIMALS; BETA DECAY RADIOISOTOPES; BETA-MINUS DECAY RADIOISOTOPES; BODY; CARBOHYDRATES; CARDIAC GLYCOSIDES; CARDIOTONICS; CARDIOVASCULAR AGENTS; CENTRAL NERVOUS SYSTEM; CENTRIFUGATION; CHLORINE COMPOUNDS; DAYS LIVING RADIOISOTOPES; DIFFUSION; DRUGS; ELEMENTS; GLYCOSIDES; HALIDES; HALOGEN COMPOUNDS; INTERMEDIATE MASS NUCLEI; ISOMERIC TRANSITION ISOTOPES; ISOTOPE APPLICATIONS; ISOTOPES; MAMMALS; METALS; MINUTES LIVING RADIOISOTOPES; NERVOUS SYSTEM; NUCLEI; ODD-ODD NUCLEI; ORGANIC COMPOUNDS; ORGANS; RADIOISOTOPES; RODENTS; RUBIDIUM ISOTOPES; SEPARATION PROCESSES; STROPHANTHINS; TISSUES; VERTEBRATES; 551001* - Physiological Systems- Tracer Techniques

Citation Formats

Lin, J.D. Effect of osmolarity on potassium transport in isolated cerebral microvessels. United States: N. p., 1988. Web. doi:10.1016/0024-3205(88)90110-5.
Lin, J.D. Effect of osmolarity on potassium transport in isolated cerebral microvessels. United States. doi:10.1016/0024-3205(88)90110-5.
Lin, J.D. 1988. "Effect of osmolarity on potassium transport in isolated cerebral microvessels". United States. doi:10.1016/0024-3205(88)90110-5.
@article{osti_6409430,
title = {Effect of osmolarity on potassium transport in isolated cerebral microvessels},
author = {Lin, J.D.},
abstractNote = {Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of /sup 86/Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed.},
doi = {10.1016/0024-3205(88)90110-5},
journal = {Life Sci.; (United States)},
number = ,
volume = 43:4,
place = {United States},
year = 1988,
month = 1
}
  • The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium (/sup 45/Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased /sup 45/Ca uptake into cerebral artery strips duringmore » 5 minutes of /sup 45/Ca loading; for potassium /sup 45/Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal /sup 45/Ca uptake but significantly blocked the increase in /sup 45/Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of /sup 45/Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated /sup 45/Ca efflux. The results demonstrate that verapamil and nifedipine block /sup 45/Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries.« less
  • Effects of two chronic treatment levels with lead on platelet aggregation in cerebral (pial) microcirculation of the mouse were investigated. Exposure to lead was made by subcutaneous injections for 7 days of lead acetate dissolved in 5% glucose solution, vehicle. Two doses of lead were used, a low dose of 0.1 mg/kg and a high dose of 1.0 mg/kg. Adult male mice were divided into three groups, 10 each; one group was injected with vehicle (control), another was injected with the low dose, and the third was injected with the high dose. Additional mice were used for the determination ofmore » hematological parameters and for the lead level in serum of the three groups. On the eighth day, platelet aggregation in pial microvessels of these groups of mice was carried out in vivo. Animals were anesthetized (urethane, 1-2 mg/g, ip), the trachea was intubated, and a craniotomy was performed. Platelet aggregation in pial microvessels was induced photochemically, by activation of circulating sodium fluorescein (0.1 mg/25 g, iv) with an intense mercury light. The time required for the first platelet aggregate to appear in pial arterioles was significantly shorter in the lead-treated mice than in control. This effect was in a dose-dependent manner; 113 {+-} 44 sec for low dose and 71 {+-} 18 sec for high dose vs 155 {+-} 25 sec for control, P < 0.02 and P < 0.001, respectively. Between the two lead-treated groups, the high dose significantly (P < 0.05) shortened the time to first aggregate. These data evidenced an increased susceptibility to cerebrovascular thrombosis as a result of exposure to lead. 26 refs., 4 figs., 2 tabs.« less
  • The binding of adrenergic ligands (/sup 3/H-prazosin, /sup 3/H-clonidine, /sup 3/H-dihydroalprenolol) was studied on a preparation of cerebral microvessels in the prefrontal cortex and putamen of control and Parkinsonian subjects. The adrenergic receptor density in microvessels of control patients was less than 0.5% and 3.3% respectively of the total binding. A significant decrease in the number of alpha-1 binding sites was observed on microvessels in the putamen of patients with Parkinson's disease. 22 references, 2 tables.
  • In rat cerebral microvessels, we characterized alpha 1- and alpha 2-adrenergic receptors, using (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine as radioligands. (/sup 3/H)Prazosin binding to the cerebral microvessels was saturable and of high affinity (dissociation constant of 78 pM), with a maximum binding of 48 fmol/mg protein. (/sup 3/H)Prazosin binding reached equilibrium within 15 minutes and was dissociated by the addition of 10 microM phentolamine. The inhibitory effects of isomers of norepinephrine and epinephrine on the binding showed that l-isomers were over 10 times more potent than d-isomers. (/sup 3/H)-p-Amino-clonidine binding to the cerebral microvessels was saturable and of high affinitymore » (K/sub D/ . 0.61 nM) with a B/sub max/ of 73 fmol/mg protein. The binding reached equilibrium within 30 minutes, and was dissociated by the addition of 100 microM l-norepinephrine. l-Isomers of norepinephrine and epinephrine were over 10 times more potent than d-isomers in displacing the binding. Thus, both (/sup 3/H)prazosin and (/sup 3/H)-p-amino-clonidine bindings to the cerebral microvessels were characterized by saturability, high affinity, reversibility, and stereo-specificity. Furthermore, the specificity of both binding sites was pharmacologically evaluated by the inhibitory effects of various adrenergic agonists and antagonists on the bindings. These data indicate the existence of alpha-adrenergic receptors in the cerebral microvessels and are consistent with the hypothesis that the cerebral microcirculation is regulated by adrenergic innervation. Furthermore, the receptors were measured in cerebral microvessels of spontaneously hypertensive rats and Wistar-Kyoto controls.« less
  • Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either (6-/sup 14/C)glucose or (1-/sup 14/C)oleic acid and the incorporation of radioactivity into /sup 14/CO/sub 2/, lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO/sub 2/ was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence ofmore » glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to /sup 14/CO/sub 2/ was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO/sub 2/ and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously.« less