skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures

Journal Article · · Proc. Natl. Acad. Sci. U.S.A.; (United States)

Formaldehyde (HCHO) produces DNA-protein crosslinks both in vitro and in vivo. Simian virus 40 (SV40) chromosomes that have been fixed by prolonged incubation with HCHO either in vitro or in vivo (within SV40-infected cells) can be converted to nearly protein-free DNA by limit-digestion with Pronase in the presence of NaDodSO/sub 4/. The remaining Pronase-resistant DNA-peptide adducts retard the DNA upon gel electrophoresis, allowing resolution of free and crosslink-containing DNA. Though efficiently crosslinking histones to DNA within nucleosomes both in vitro and in vivo, HCHO does not crosslink either purified lac repressor to lac operator-containing DNA or an (A + T)-DNA-binding protein (..cap alpha..-protein) to its cognate DNA in vitro. Furthermore, a protein that does not bind to DNA, such as serum albumin, is not crosslinked to DNA by HCHO even at extremely high protein concentrations. These properties of HCHO as a DNA-protein crosslinker are used to probe the distribution of nucleosomes in vivo. It is shown that there are no HCHO-crosslinkable DNA-protein contacts in a subset of SV40 chromosomes in vivo within a 325-base-pair stretch that spans the exposed (nuclease-hypersensitive) region of the SV40 chromosomes. This replication origin-proximal region has been found previously to lack nucleosomes in a subset of isolated SV40 chromosomes. Other applications of the HCHO technique are discussed, including the possibility of obtaining base-resolution in vivo nucleosome footprints.

Research Organization:
Massachusetts Institute of Technology, Cambridge
OSTI ID:
6385619
Journal Information:
Proc. Natl. Acad. Sci. U.S.A.; (United States), Vol. 82:19
Country of Publication:
United States
Language:
English