skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stanford Linear Accelerator Center pulsed x-ray facility

Journal Article · · Health Phys.; (United States)

The Stanford Linear Accelerator Center (SLAC) operates a high-energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the radio-frequency power for the accelerator. Hence, a pulsed x-ray facility has been built at SLAC mainly for testing the response of different radiation detection instruments to pulsed radiation fields. The x-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target window. The window consists of Al 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of Au 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 microseconds. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The maximum absorbed dose rate obtained at 6.35 cm below the target window as measured by an ionization chamber is 258 Gy/h. The major part of the x-ray tube is enclosed in a large walk-in cabinet made of 1.9-cm-thick (3/4-inch-thick) plywood and lined with 0.32-cm-thick (1/8-inch-thick) Pb to make a very versatile facility.

Research Organization:
Stanford Univ., CA
OSTI ID:
6335575
Journal Information:
Health Phys.; (United States), Vol. 4
Country of Publication:
United States
Language:
English