skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides

Journal Article · · Journal of Agricultural and Food Chemistry; (USA)
DOI:https://doi.org/10.1021/jf00095a029· OSTI ID:6321155

The selective grass herbicides diclofop, haloxyfop, and trifop (((aryloxy)phenoxy)propionic acids) and alloxydim, sethoxydim, and clethodim (cyclohexanediones) are potent, reversible inhibitors of acetyl-coenzyme A carboxylase (ACC) partially purified from barley, corn, and wheat. Although inhibition of the wheat enzyme by clethodim and diclofop is noncompetitive versus each of the substrates adenosine triphosphate (ATP), HCO{sub 3}{sup {minus}}, and acetyl-coenzyme A (acetyl-CoA), diclofop and clethodim are nearly competitive versus acetyl-CoA since the level of inhibition is most sensitive to the concentration of acetyl-CoA (K{sub is} < K{sub ii}). To conclusively show whether the herbicides interact at the biotin carboxylation site or the carboxyl transfer site, the inhibition of isotope exchange and partial reactions catalyzed at each site was studied with the wheat enzyme. Only the ({sup 14}C)acetyl-CoA-malonyl-CoA exchange and decarboxylation of ({sup 14}C)malonyl-CoA reactions are strongly inhibited by clethodim and diclofop, suggesting that the herbicides interfere with the carboxyl transfer site rather than the biotin carboxylation site of the enzyme. Double-inhibition studies with diclofop and clethodim suggest that the ((aryloxy)phenoxy)propionic acid and cyclohexanedione herbicides may bind to the same region of the enzyme.

OSTI ID:
6321155
Journal Information:
Journal of Agricultural and Food Chemistry; (USA), Vol. 38:5; ISSN 0021-8561
Country of Publication:
United States
Language:
English