skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tornado type wind turbines

Abstract

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Inventors:
Publication Date:
OSTI Identifier:
6223800
Patent Number(s):
US 4452562
Assignee:
Iowa State University Research Foundation, Inc. EDB-86-008504
Resource Type:
Patent
Resource Relation:
Patent File Date: Filed date 6 May 1983; Other Information: PAT-APPL-492464
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; TORNADO TURBINES; DESIGN; AIR FLOW; COST; ELECTRIC GENERATORS; ENERGY EFFICIENCY; PRESSURE CONTROL; TOWERS; VELOCITY; VORTEX FLOW; CONTROL; EFFICIENCY; FLUID FLOW; GAS FLOW; MACHINERY; MECHANICAL STRUCTURES; TURBINES; TURBOMACHINERY; VERTICAL AXIS TURBINES; WIND TURBINES; 170602* - Wind Energy Engineering- Turbine Design & Operation

Citation Formats

Hsu, Ch.-T. Tornado type wind turbines. United States: N. p., 1984. Web.
Hsu, Ch.-T. Tornado type wind turbines. United States.
Hsu, Ch.-T. 1984. "Tornado type wind turbines". United States. doi:.
@article{osti_6223800,
title = {Tornado type wind turbines},
author = {Hsu, Ch.-T.},
abstractNote = {A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1984,
month = 6
}
  • A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed openingmore » in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.« less
  • Wind tunnel tests were conducted for the performance of tornado-type wind turbines with radial inflow supply from the incoming wind. It was shown that the radial inflow supply was necessary for intensifying a vortex in the wind collecting tower and, consequently, for enhancing the power efficiencies. A maximum power efficiency of 3.8 was obtained for a circular-shaped tower as compared to the value of 0.4 for the conventional windmills.
  • Wind tunnel tests were conducted for the performance of tornado-type wind turbines (TTWT) with radial inflow supply from incoming wind. It was shown that the radial inflow supply was necessary for intensifying a vortex in the wind collecting tower and, consequently, for enhancing the power efficiencies, C /SUB p/, of the wind turbines. Maximum C /SUB p/ (based on turbine disk area) of 3.8 and 9 was obtained for circular- and spiral-shaped towers, respectively, as compared to 0.4 for conventional windmills. With the radial inflow supply, the maximum C /SUB p/ was increased about 100% for the circular model butmore » only 15-30% for the spiral model since the spiral model provides the inflow effect by itself.« less
  • In a tornado-type wind turbine the wind collecting tower is equipped with adjustable vanes that can be opened on the windward side and closed on the leeward side. The wind enters the tower tangentially through these open vanes and exits from the top. As a result, a vortex is formed inside the tower. A vertical axis turbine which is located underneath the tower floor admits air vertically and exhausts it into the vortex core. The pressure drop in the vortex core can be high, depending upon the vortex concentration, thus enhancing manyfold the total pressure drop across the turbine. Themore » power coefficient C /SUB p/ of this system depends mainly on how low a pressure can be created in the vortex core. A maximum C /SUB p/ of about 2.5 was obtained by Yen for a spiral shaped tower. This is about 6.25 times the C /SUB p/ of conventional windmills. Analytical studies have been carried out by several investigators to study the C /SUB p/ of this vortex machine. Loth considered the conservation of angular momentum and obtained a C /SUB p/ based on the tower frontal area, which is not impressive.« less
  • Atmospheric wind is admitted tangentially into a vertically extending structure and directed against the interior curved surface of the structure to produce vortex flow. The structure is open ended and spaced from ground or connected to a ram-air subterranean tunnel. The vortex flow and corresponding low pressure core draws ambient and/or ram air into the bottom of the structure to drive a horizontal turbine.