skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optimization of a class of latent thermal energy storage systems with multiple phase-change materials

Journal Article · · Journal of Solar Energy Engineering
DOI:https://doi.org/10.1115/1.2888040· OSTI ID:616316
 [1];  [2];  [3];  [4]
  1. Lawrence Livermore National Lab., CA (United States)
  2. Daido Inst. of Tech., Nagoya (Japan). Dept. of Mechanical Engineering
  3. Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering
  4. Centro de Ingenieria y Desarollo Industrial, Queretaro (Mexico)

This paper presents an analysis of a class of latent thermal energy storage (LTES) system. The analysis is based on a simplified model that allows the system performance to be evaluated in terms of a small set of parameters, while still retaining the main thermodynamic aspects associated with their operation. This analysis therefore permits the broad-based application potential of these systems to be viewed. The paper also discusses the applicability of the model to practical systems. This paper analyzes LTES with multiple energy storage cells and multiple phase-change materials (PCMs). The most general case of infinite energy storage cells and PCMs is solved, for the charge process only, as well as for the overall charge-discharge process. The results yield the optimum phase change temperature, expressed as a continuous function of position along the LTES. The method is equally applicable to the case of a finite number of storage cells. An example of the application of the method to this case is also included. The results show the optimum phase change temperatures for each of the problems being considered, along with the corresponding optimum exergetic efficiencies. The solutions to the optimization problems are surprisingly simple to express, considering the difficulty of the problems, and indicate the potential advantages of using LTES with multiple PCMs.

OSTI ID:
616316
Journal Information:
Journal of Solar Energy Engineering, Vol. 120, Issue 1; Other Information: PBD: Feb 1998
Country of Publication:
United States
Language:
English