skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure of Bordetella pertussis peptidoglycan

Abstract

Bordetella pertussis Tohama phases I and III were grown to the late-exponential phase in liquid medium containing (/sup 3/H)diaminopimelic acid and treated by a hot (96/sup 0/C) sodium dodecyl sulfate extraction procedure. Washed sodium dodecyl sulfate-insoluble residue from phases I and III consisted of complexes containing protein (ca. 40%) and peptidoglycan (60/sup 6/). Subsequent treatment with proteinase K yielded purified peptidoglycan which contained N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, and diaminopimelic acid in molar ratios of 1:1:2:1:1 and <2% protein. Radiochemical analyses indicated that /sup 3/H added in diaminopimelic acid was present in peptidoglycan-protein complexes and purified peptidoglycan as diaminopimelic acid exclusively and that pertussis peptidoglycan was not O acetylated, consistent with it being degraded completely by hen egg white lysozyme. Muramidase-derived disaccharide peptide monomers and peptide-cross-linked dimers and higher oligomers were isolated by molecular-sieve chromatography; from the distribution of these peptidoglycan fragments, the extent of peptide cross-linking of both phase I and III peptidoglycan was calculated to be ca. 48%. Unambiguous determination of the structure of muramidase-derived pepidoglycan fragments by fast atom bombardment-mass spectrometry and tandem mass spectrometry indicated that the pertussis peptidoglycan monomer fraction was surprisingly homogeneous, consisting of >95% N-acetylglucosaminyl-N-acetylmuramyl-alanyl-glutamyl-diaminopimelyl-alanine.

Authors:
; ; ;
Publication Date:
Research Org.:
Indiana Univ. School of Medicine, Indianapolis
OSTI Identifier:
6075681
Resource Type:
Journal Article
Resource Relation:
Journal Name: J. Bacteriol.; (United States); Journal Volume: 169:9
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; BACTERIA; GLUCOPROTEINS; STRUCTURAL CHEMICAL ANALYSIS; PROTEIN STRUCTURE; RADIOCHEMICAL ANALYSIS; TRITIUM COMPOUNDS; CARBOHYDRATES; CHEMICAL ANALYSIS; LABELLED COMPOUNDS; MICROORGANISMS; ORGANIC COMPOUNDS; PROTEINS; QUANTITATIVE CHEMICAL ANALYSIS; SACCHARIDES; 550201* - Biochemistry- Tracer Techniques; 550701 - Microbiology- Tracer Techniques

Citation Formats

Folkening, W.J., Nogami, W., Martin, S.A., and Rosenthal, R.S. Structure of Bordetella pertussis peptidoglycan. United States: N. p., 1987. Web.
Folkening, W.J., Nogami, W., Martin, S.A., & Rosenthal, R.S. Structure of Bordetella pertussis peptidoglycan. United States.
Folkening, W.J., Nogami, W., Martin, S.A., and Rosenthal, R.S. 1987. "Structure of Bordetella pertussis peptidoglycan". United States. doi:.
@article{osti_6075681,
title = {Structure of Bordetella pertussis peptidoglycan},
author = {Folkening, W.J. and Nogami, W. and Martin, S.A. and Rosenthal, R.S.},
abstractNote = {Bordetella pertussis Tohama phases I and III were grown to the late-exponential phase in liquid medium containing (/sup 3/H)diaminopimelic acid and treated by a hot (96/sup 0/C) sodium dodecyl sulfate extraction procedure. Washed sodium dodecyl sulfate-insoluble residue from phases I and III consisted of complexes containing protein (ca. 40%) and peptidoglycan (60/sup 6/). Subsequent treatment with proteinase K yielded purified peptidoglycan which contained N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, and diaminopimelic acid in molar ratios of 1:1:2:1:1 and <2% protein. Radiochemical analyses indicated that /sup 3/H added in diaminopimelic acid was present in peptidoglycan-protein complexes and purified peptidoglycan as diaminopimelic acid exclusively and that pertussis peptidoglycan was not O acetylated, consistent with it being degraded completely by hen egg white lysozyme. Muramidase-derived disaccharide peptide monomers and peptide-cross-linked dimers and higher oligomers were isolated by molecular-sieve chromatography; from the distribution of these peptidoglycan fragments, the extent of peptide cross-linking of both phase I and III peptidoglycan was calculated to be ca. 48%. Unambiguous determination of the structure of muramidase-derived pepidoglycan fragments by fast atom bombardment-mass spectrometry and tandem mass spectrometry indicated that the pertussis peptidoglycan monomer fraction was surprisingly homogeneous, consisting of >95% N-acetylglucosaminyl-N-acetylmuramyl-alanyl-glutamyl-diaminopimelyl-alanine.},
doi = {},
journal = {J. Bacteriol.; (United States)},
number = ,
volume = 169:9,
place = {United States},
year = 1987,
month = 9
}
  • The unusual sugar 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, or ManNAc3NAcA, has been observed in the lipopolysaccharides of both pathogenic and nonpathogenic Gram-negative bacteria. It is added to the lipopolysaccharides of these organisms by glycosyltransferases that use as substrates UDP-ManNAc3NAcA. Five enzymes are ultimately required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetylglucosamine. The second enzyme in the pathway, encoded by the wlba gene and referred to as WlbA, catalyzes the NAD-dependent oxidation of the C-3' hydroxyl group of the UDP-linked sugar. Here we describe a combined structural and functional investigation of the WlbA enzymes from Bordetella pertussis and Chromobacterium violaceum. For this investigation,more » ternary structures were determined in the presence of NAD(H) and substrate to 2.13 and 1.5 {angstrom} resolution, respectively. Both of the enzymes display octameric quaternary structures with their active sites positioned far apart. The octamers can be envisioned as tetramers of dimers. Kinetic studies demonstrate that the reaction mechanisms for these enzymes are sequential and that they do not require {alpha}-ketoglutarate for activity. These results are in sharp contrast to those recently reported for the WlbA enzymes from Pseudomonas aeruginosa and Thermus thermophilus, which function via ping-pong mechanisms that involve {alpha}-ketoglutarate. Taken together, the results reported here demonstrate that there are two distinct families of WlbA enzymes, which differ with respect to amino acid sequences, quaternary structures, active site architectures, and kinetic mechanisms.« less
  • An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increasesmore » in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.« less
  • Sample preparation, crystallization and preliminary X-ray analysis are reported for two B. pertussis extracytoplasmic solute receptors. DctP6 and DctP7 are two Bordetella pertussis proteins which belong to the extracytoplasmic solute receptors (ESR) superfamily. ESRs are involved in the transport of substrates from the periplasm to the cytosol of Gram-negative bacteria. DctP6 and DctP7 have been crystallized and diffraction data were collected using a synchrotron-radiation source. DctP6 crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 108.39, b = 108.39, c = 63.09 Å, while selenomethionyl-derivatized DctP7 crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parametersmore » a = 64.87, b = 149.83, c = 170.65 Å. The three-dimensional structure of DctP7 will be determined by single-wavelength anomalous diffraction, while the DctP6 structure will be solved by molecular-replacement methods.« less