skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ study of salt film stability in simulated pits of nickel by Raman and electrochemical impedance spectroscopies

Journal Article · · Journal of the Electrochemical Society
DOI:https://doi.org/10.1149/1.1838173· OSTI ID:603744
;  [1]
  1. Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

The changes in solution composition and the stability of a salt film in a 10 mm deep, simulated pit electrode made of nickel in a 0.5 M HCl solution were monitored as a function of applied potential using a 532 nm fiber-optic Raman system. Raman spectroscopy was able to clearly distinguish dissolved Ni(II)Cl species from the salt film of NiCl{sub 2}. Furthermore, the gradient of Ni(II)Cl in the pit was measured as a function of potential. At an applied potential of 1.5 V{sub SCE}, a NiCl{sub 2} salt film was observed at the bottom of the pit after about 5,200 s, corresponding to the first big drop in current density. The salt film was not observed below an applied potential of 0 V{sub SCE}. However, repassivation did not occur above a potential of about {minus}0.3 V{sub SCE}. The concentration gradient inside the pit decreased dramatically at {minus}0.3 V{sub SCE} and the chloride concentration at the bottom of the pit at repassivation was found to be about 17% of saturation value with respect to NiCl{sub 2} {center_dot} 6H{sub 2}O. Electrochemical impedance spectroscopy of the simulated pit electrode in the same solution at various applied potentials was used to determine the electronic properties of the salt film and the thickness of the film EIS suggested that the salt film had a dual structure, with a compact film underneath a thicker porous layer.

Sponsoring Organization:
USDOE
OSTI ID:
603744
Journal Information:
Journal of the Electrochemical Society, Vol. 144, Issue 12; Other Information: PBD: Dec 1997
Country of Publication:
United States
Language:
English

Similar Records

Passivation of stainless steels in hydrochloric acid
Journal Article · Thu Apr 01 00:00:00 EST 1999 · Journal of the Electrochemical Society · OSTI ID:603744

Effect of bicarbonate ion additives on pitting corrosion of type 316L stainless steel in aqueous 0.5 M sodium chloride solution
Journal Article · Thu Apr 01 00:00:00 EST 1999 · Corrosion · OSTI ID:603744

The passivity and breakdown of beryllium in aqueous solutions
Journal Article · Sat Aug 01 00:00:00 EDT 1998 · Journal of the Electrochemical Society · OSTI ID:603744